Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T22:21:06.208Z Has data issue: false hasContentIssue false

New minerals tsangpoite Ca5(PO4)2(SiO4) and matyhite Ca9(Ca0.50.5)Fe(PO4)7 from the D'Orbigny angrite

Published online by Cambridge University Press:  29 June 2018

Shyh-Lung Hwang*
Affiliation:
Department of Materials Science and Engineering, National Dong Hwa University, Hualien, Taiwan, ROC
Pouyan Shen
Affiliation:
Department of Materials Science and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung, Taiwan, ROC
Hao-Tsu Chu
Affiliation:
Central Geological Survey, PO Box 968, Taipei, Taiwan, ROC
Tzen-Fu Yui
Affiliation:
Institute of Earth Sciences, Academia Sinica, Taipei, Taiwan, ROC
Maria-Euginia Varela
Affiliation:
Instituto de Ciencias Astronómicas de la Tierra y del Espacio (ICATE)Avenida España 1512 sur, J5402DSP, San Juan, Argentina
Yoshiyuki Iizuka
Affiliation:
Institute of Earth Sciences, Academia Sinica, Taipei, Taiwan, ROC
*
*Author for correspondence: Shyh-Lung Hwang, Email: slhwang@gms.ndhu.edu.tw

Abstract

Tsangpoite, ideally Ca5(PO4)2(SiO4), the hexagonal polymorph of silicocarnotite, and matyhite, ideally Ca9(Ca0.50.5)Fe(PO4)7, the Fe-analogue of Ca-merrillite, were identified from the D'Orbigny angrite meteorite by electron probe microanalysis, electron microscopy and micro-Raman spectroscopy. On the basis of electron diffraction, the symmetry of tsangpoite was shown to be hexagonal, P63/m or P63, with a = 9.489(4) Å, c = 6.991(6) Å, V = 545.1(6) Å3 and Z = 2 for 12 oxygen atoms per formula unit, and that of matyhite was shown to be trigonal, R3c, with a = 10.456 (7) Å, c = 37.408(34) Å, V = 3541.6 (4.8) Å3 and Z = 6 for 28 oxygen atoms per formula unit. On the basis of their constant association with the grain-boundary assemblage: Fe sulfide + ulvöspinel + Al–Ti-bearing hedenbergite + fayalite–kirschsteinite intergrowth, the formation of tsangpoite and matyhite, along with kuratite (the Fe-analogue of rhönite), can be readily rationalised as crystallisation from residue magmas at the final stage of the D'Orbigny meteorite formation. Alternatively, the close petrographic relations between tsangpoite/matyhite and the resorbed Fe sulfide rimmed by fayalite + kirschsteinite symplectite, such as the nucleation of tsangpoite in association with magnetite ± other phases within Fe sulfide and the common outward growth of needle-like tsangpoite or plate-like matyhite from the fayalite–kirschsteinite symplectic rim of Fe sulfide into hedenbergite, infer that these new minerals and the grain-boundary assemblage might represent metasomatic products resulting from reactions between an intruding metasomatic agent and the porous olivine–plagioclase plate + fayalite-kirschsteinite overgrowth + augite + Fe sulfide aggregates. Still further thermochemical and kinetics evidence is required to clarify the exact formation mechanisms/conditions of the euhedral tsangpoite, matyhite and kuratite at the grain boundary of the D'Orbigny angrite.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Sergey Krivovichev

References

Alberius-Henning, P., Adolfsson, E., Grins, J. and Fitch, A. (2001) Triclinic oxy-hydroxyapatite. Journal of Materials Science, 36, 663668.Google Scholar
Britvin, S.N., Krivovichev, S.V. and Armbruster, T. (2016) Ferromerrillite, Ca9NaFe2+(PO4)7, a new mineral from the Martian meteorites, and some insights into merrillite-tuite transformation in shergottites. European Journal of Mineralogy, 28, 125136.Google Scholar
Bredig, M.A. (1942) Isomorphism and allotropy in compounds of the type A2XO4. Journal of Chemical Physics, 46, 747764.Google Scholar
Bredig, M.A. (1943) Phase relations in the system calcium orthosilicate-orthophosphate. American Mineralogist, 28, 594601.Google Scholar
de Aza, P. N., Santos, C., Pazo, A., de Aza, S., Cuscó, R. and Artús, L. (1997) Vibrational properties of calcium phosphate compounds. 1. Raman spectrum of β-tricalcium phosphate. Chemistry of Materials, 9, 912915.Google Scholar
Dickens, B. and Brown, W.E. (1971) The crystal structure of Ca5(PO4)2SiO4 (silico-carnotite). Tschermaks Mineralogische und Petrographische Mitteilungen, 16, 127.Google Scholar
Dickens, B., Schroeder, L.W. and Brown, W.E. (1974) Crystallographic studies of the role of Mg as a stabilizing impurity in β-Ca3(PO4)2. Journal of Solid State Chemistry, 10, 232248.Google Scholar
Dowty, E. (1977) Phosphate in Angra dos Reis: structure and composition of the Ca3(PO4)2 minerals. Earth and Planetary Science Letters, 35, 347351.Google Scholar
Ehfers, E.G. (1972) The Interpretation of Geological Phase Diagrams. W.H. Freeman and Co., Ltd., San Francisco, USA, 280 pp.Google Scholar
Fix, W., Heymann, H. and Heinke, R. (1969) Subsolidus relations in the system 2CaOSiO2–3CaOP2O5. Journal of American Ceramics Society, 52, 346347.Google Scholar
Fukuda, K., Maki, I., Toyoda, K. and Ito, S. (1993) Kinetics of the α-to-α′H polymorphic phase transition of Ca2SiO4 solid solutions. Journal of American Ceramics Society, 76, 18211824.Google Scholar
Fukuda, K., Maki, I., Ito, S. and Miyake, T. (1997) Structural change in phosphorus-bearing dicalcium silicates. Journal of Ceramic Society of Japan, 105, 117121.Google Scholar
Galuskin, E.V., Galuskina, I.O., Gfeller, F., Krüger, B., Kusz, J., Vapnik, Y., Dulski, M. and Dzierżanowski, P. (2016) Silicocarnotite, Ca5[(SiO4)(PO4)](PO4), a new ‘old’ mineral from the Negev Desert, Israel, and the ternesite-silicocarnotite solid solution: indicators of high-temperature alteration of pyrometamorphic rocks of the Hatrurim Complex, Southern Levant. European Journal of Mineralogy, 28, 105112.Google Scholar
Galuskina, I.O., Galuskin, E.V. and Vapnik, Y.A. (2016) Terrestrial merrillite. 2nd European Mineralogy Conference. Plinius, 42, 563 [abstract].Google Scholar
Gamble, J.A. and Kyle, P.R. (1987) The origins of glass and amphibole in spinel-wehrlite xenoliths from Foster Crater, McMurdo Volcanic Group, Antarctica. Journal of Petrology, 28, 755779.Google Scholar
Gfeller, F., Widmer, R., Krüger, B., Galuskin, I.O. and Armbruster, T. (2015) The crystal structure of flamite and its relation to Ca2SiO4 polymorphs and nagelschmidtite. European Journal of Mineralogy, 27, 755769.Google Scholar
Gomes, S., Nedelec, J.M., Jallot, E. and Sheptyakov, D. (2011) Silicon location in silicate-substituted calcium phosphate ceramics determined by neutron diffraction. Crystal Growth and Designs, 11, 40174026.Google Scholar
Goodrich, C.A. (1988) Petrology of the unique achondrite LEW 86010. 19 th Lunar and Planetary Science Conference, abstract #1201, 399–400. [Lunar and Planetary Institute abstracts available at https://www.lpi.usra.edu/publications/absearch/]Google Scholar
Gopal, R. and Calvo, C. (1972) Structure relationship of whitlockite and β-Ca3(PO4)2. Nature Physical Science, 237, 3032.Google Scholar
Grapes, R. and Keller, J. (2010) Fe2+-dominant rhönite in undersaturated alkaline basaltic rocks, Kaiserstuhl volcanic complex, Upper Rhine Graben, SW Germany. European Journal of Mineralogy, 22, 285292.Google Scholar
Greenwood, J.P., Blake, R.E. and Coath, C.D. (2003) Ion microprobe measurements of 18O/16O ratios of phosphate minerals in the Martian meteorites ALH84001 and Los Angeles. Geochimica et Cosmochimica Acta, 67, 22892298.Google Scholar
Gross, J., Filiberto, J., Herd, C.D.K., Melwani Daswani, M., Schwenzer, S.P. and Treiman, A.H. (2013) Petrography, mineral chemistry, and crystallization history of olivine-phyric shergottite NWA 6234: a new melt composition. Meteoritics & Planetary Science, 48, 854871.Google Scholar
Hata, M., Marumo, F., Iwai, S. and Aoki, H. (1980) Structure of a lead apatite Pb9(PO4). Acta Crystallographica, B36, 21282130.Google Scholar
Havette, A., Clocchiatti, R., Nativel, P. and Montaggioni, L.F. (1982) Une paragenèse inhabituelle à fassaïte, mélilite et rhönite dans un basalte alcalin contaminé au contact d'un récif coralline (Saint-Leu, Ile de la Réunion). Bulletin de Minéralogie, 105, 364375.Google Scholar
Hughes, J.M., Jolliff, B.L. and Gunter, M.E. (2006) The atomic arrangement of merrillite from the Fra Mauro Formation, Apollo 14 Lunar mission: The first structure of merrillite from the Moon. American Mineralogist, 91, 15471595.Google Scholar
Hughes, J.M., Jolliff, B.L. and Rakovan, J. (2008) The crystal chemistry of whitlockite and merrillite and the dehydrogenation of whitlockite to merrillite. American Mineralogist, 93, 13001305.Google Scholar
Hwang, S.L., Shen, P., Chu, H.T., Yui, T.F., VarelaM.,E. M.,E. and Iizuka, Y. (2015) Tsangpoite, IMA 2014-110. CNMNC Newsletter No. 25. Mineralogical Magazine, 79, 529535.Google Scholar
Hwang, S.L., Shen, P., Chu, H.T., Yui, T.F., Varela, M.E. and Iizuka, Y. (2016 a) Kuratite, Ca4(Fe2+10Ti2)O4[Si8Al4O36], the Fe2+-analogue of rhönite, a new mineral from the D'Orbigny angrite meteorite. Mineralogical Magazine, 80, 10671076.Google Scholar
Hwang, S.L., Shen, P., Chu, H.T., Yui, T.F., Varela, M.E. and Iizuka, Y. (2016 b) Matyhite, IMA 2015-121. CNMNC Newsletter No. 31. Mineralogical Magazine, 80, 691697.Google Scholar
Ibáñez, J., Artús, L., Cuscó, R., López, Á., Menéndez, E. and Andrade, M.C. (2007) Hydration and carbonation of monoclinic C2S and C3S studied by Raman spectroscopy. Journal of Raman Spectroscopy, 38, 6167.Google Scholar
Jambon, A., Barrat, J.-A., Boudouma, O., Fonteilles, M., Badia, D., Göpel, C. and Bohn, M. (2005) Mineralogy and petrology of the angrite Northwest Africa 1296. Meteoritics & Planetary Science, 40, 361375.Google Scholar
Jambon, A., Boudouma, O., Fonteilles, M., Le Guillou, C., Badia, D. and Barrat, J.A. (2008) Petrology and mineralogy of the angrite Northwest Africa 1670. Meteoritics & Planetary Science, 43, 17831795.Google Scholar
Jambon, A. and Boudouma, O. (2011) Evidence for rhönite in angrites D’Orbigny and Sahara 99555. 74 th Annual Meteoritical Society Meeting, abstract #5167. [Lunar and Planetary Institute abstracts available at https://www.lpi.usra.edu/publications/absearch/]Google Scholar
Jillavenkatesa, A. and Condrate, R.A. Sr. (1998) The infrared and Raman spectra of β-and α-tricalcium phosphate Ca3(PO4)2. Spectroscopy Letters, 31, 16191634.Google Scholar
Jolliff, B.L., Hughes, J.M., Freeman, J.J. and Zeigler, R.A. (2006) Crystal chemistry of Lunar merrillite and comparison to other meteoritic and planetary suites of whitlockite and merrillite. American Mineralogist, 91, 15831595.Google Scholar
Kaneda, K., Mikouchi, T., Saito, A., Sugiyama, K., Ohsumi, K., Mukai, M., Osaka, T., Miyata, Y., Nakai, M., Kasama, T., Chikami, J. and Miyamoto, M. (2001) Mineralogy of unique calcium silico-phosphates in angrites. 32nd Lunar and Planetary Science Conference, abstract #2127. [Lunar and Planetary Institute abstracts available at https://www.lpi.usra.edu/publications/absearch/].Google Scholar
Keil, K. (2012) Angrites, a small but diverse suite of ancient, silica-undersaturated volcanic-plutonic mafic meteorites, and the history of their parent asteroid. Chemie der Erde – Geochemistry, 72, 191218.Google Scholar
Kunzmann, T. (1999) The aenigmatite-rhönite mineral group. European Journal of Mineralogy, 11, 743756.Google Scholar
Kurat, G., Varela, M.E., Brandstätter, F., Weckwerth, G., Clayton, R., Weber, H.W., Schultz, L., Wäsch, E. and Nazarov, M.A. (2004) D’Orbigny: A non-igneous angritic achondrite? Geochiica et Cosmochimica Acta, 68, 19011921.Google Scholar
Lugo, G.J., Mazón, P., Baudin, C. and de Aza, P.N. (2015) Nurse′s A-phase: synthesis and characterization in the binary system Ca2SiO4-Ca3(PO4)2. Journal of American Ceramics Society, 98, 30423046.Google Scholar
Marchat, D., Zymelka, M., Coelho, C., Gremillard, L., Joly-Pottuz, L., Babonneau, F., Esnouf, C., Chevalier, J. and Bernache-Assollant, D. (2013) Accurate characterization of pure silicon-substituted hydroxyapatite powders synthesized by a new precipitation route. Acta Biomaterialia, 9, 69927004.Google Scholar
Mathew, M., Brown, W.E., Austin, M. and Negas, T. (1980) Lead alkali apatites without hexad anion: The crystal structure of Pb8K2(PO4)6. Journal of Solid State Chemistry, 35, 6976.Google Scholar
McKay, G., Lindstrom, D., Yang, S.R. and Wagstaff, J. (1988) Petrology of unique achondrite Lewis Cliff 86010. 19 th Lunar and Planetary Science Conference, abstract #1385, 762–763. [Lunar and Planetary Institute abstracts available at https://www.lpi.usra.edu/publications/absearch/].Google Scholar
McKay, G., Crozaz, G., Wagstaff, J., Yang, S.R. and Lundberg, L. (1990) A petrographic, electron microprobe and ion probe study of mini-angrite Lewis Cliff887051. 19 th Lunar and Planetary Science Conference, abstract #1393, 771–772. [Lunar and Planetary Institute abstracts available at https://www.lpi.usra.edu/publications/absearch/].Google Scholar
Mikouchi, T. and McKay, G. (2001) Mineralogical investigation of D'Orbigny: A new angrite showing close affinities to Asuka 881371, Sahara 99555 and Lewis Cliff 87051. 32 nd Lunar and Planetary Science Conference, abstract #1876. [Lunar and Planetary Institute abstracts available at https://www.lpi.usra.edu/publications/absearch/].Google Scholar
Mikouchi, T., Miyamoto, M. and McKay, G. (1996) Mineralogy study of angrite Asuka-881371: Its possible relation to angrite LEW 87051 (abstract). Antarctic Meteorites, 9, 174188.Google Scholar
Mikouchi, T., Kaneda, K., Miyamoto, M., Sugiyama, K. and Ohsumi, K. (2001) Micro Raman spectroscopy of unknown calcium silico-phosphates in angrite meteorites.. 11 th V. M. Goldschmidt Conference, abstract #3659.Google Scholar
Mikouchi, T., Sugiyama, K., Kato, Y., Yamaguchi, A., Koizumi, E. and Kaneda, K. (2010) Mineralogy of calcium silico-phosphates in angrites compared with related phases in heated eucrite and synthetic analog. 41 st Lunar and Planetary Science Conference, abstract #2343. [Lunar and Planetary Institute abstracts available at https://www.lpi.usra.edu/publications/absearch/].Google Scholar
Mikouchi, T., Sugiyama, K., Satake, W. and Amelin, Y. (2011) Mineralogy and crystallography of calcium silico-phosphate in Northwest Africa 4590 angrite.. 42 nd Lunar and Planetary Science Conference, abstract #2026. [Lunar and Planetary Institute abstracts available at https://www.lpi.usra.edu/publications/absearch/].Google Scholar
Mittlefehldt, D.W. and Lindstrom, M.M. (1990) Geochemistry and genesis of angrites. Geochimica et. Cosmochimica Acta, 54, 32093218.Google Scholar
Mittlefehldt, D.W., Killgore, M. and Lee, M.T. (2002) Petrology and geochemistry of D’Orbigny, geochemistry of Sahara 99555, and the origins of angrites. Meteoritics & Planetary Science, 37, 345369.Google Scholar
Mukhopadhyay, D.K. and Lindsley, D.H. (1983) Phase relations in the join kirschsteinite (CaFeSiO4)-fayalite (Fe2SiO4). American Mineralogist, 68, 10891094.Google Scholar
Mumme, W.G., Cranswick, L. and Chakoumakos, B. (1996) Rietveld crystal structure refinements from high temperature neutron powder diffraction data for the polymorphs of dicalcium silicate. Neues Jahrbuch für Mineralogie-Abhandlungen, 170, 171188.Google Scholar
Nickel, E.H. and Grice, J.D. (1998) The IMA Commission on New Minerals and Mineral Names: procedures and guidelines on mineral nomenclature. The Canadian Mineralogist, 36, 913926.Google Scholar
Nurse, R.W., Welch, J.H. and Gutt, W. (1959) High-temperature phase equilibria in the system dicalcium silicate-tricalcium phosphate. Journal of the Chemical Society, 1959, 10771083.Google Scholar
Olsson, H.B. (1983) Rhönite from Skåne (Scania), southern Sweden. Geologiska Föreningen i Stockholm Förhandlingar, 105, 281286.Google Scholar
Peretyazhko, I.S., Savina, E.A. and Khromova, E.A. (2017) Minerals of the rhönite-kuratite series in paralavas from a new combustion metamorphic complex in the Choir-Nyalga basin (Central Mongolia): Composition, mineral assemblages and formation conditions. Mineralogical Magazine, 81, 949974.Google Scholar
Prinz, M. and Weisberg, M.K. (1995) Asuka 881371 and the angrites: Origin in a heterogeneous, CAI-enriched, differentiated, volatile depleted body (abstract) Antarctic Meteorites, 20, 207210.Google Scholar
Prinz, M., Keil, K., Hlava, P.F., Berkley, J.L., Gomes, C.B. and Curvello, W.S. (1977) Studies of Brazilian Meteorites, III. Origin and history of the Angra dos Reis achondrite. Earth and Planetary Science Letters, 35, 317330.Google Scholar
Rabadan-Ros, R., Velásquez, P.A., Meseguer-Olmo, L. and de Aza, P.N. (2016) Morphological and Structural Study of a Novel Porous Nurse's A Ceramic with Osteoconductive Properties for Tissue Engineering. Materials (Basel), 9, 474487.Google Scholar
Rabinovich, E.M., Ish-Shalom, M. and Kisilev, A. (1980) Metastable liquid immiscibility and Vycor-type glass in phosphate-silicate systems. Journal of Materials Science, 15, 20272038.Google Scholar
Rubin, A.E. (1997) Mineralogy of meteorite groups: An update. Meteoritics & Planetary Science, 32, 733734.Google Scholar
Rubin, A.E. and Ma, C. (2017) Meteoritic minerals and their origins. Chemie der Erde – Geochemistry, 77, 325385.Google Scholar
Saalfeld, H. and Klaska, K.H. (1981) The crystal structure of 6Ca2SiO4-1Ca3(PO4). Zeitschrift für Kristallographie-Crystalline Materials, 155, 6573.Google Scholar
Serena, S., Sainz, M.A. and Caballero, A. (2014) Single-phase silicocarnotite synthesis in the subsystem Ca3(PO4)2–Ca2SiO4. Ceramics International, 40, 82458252.Google Scholar
Serena, S., Caballero, A., de Aza, P.N. and Sainz, M.A. (2015) New evaluation of the in vitro response of silicocarnotite monophasic material. Ceramics International, 41, 94119419.Google Scholar
Sharygin, V.V., Kthay, K., Szab, C., Timina, T.J., Trk, K., Vapnik, Y. and Kuzmin, D.V. (2011) Rhönite in alkali basalts: Silicate melt inclusions in olivine phenocrysts. Russian Geology and Geophysics, 52, 13341352.Google Scholar
Shearer, C.K., Burger, P.V., Papike, J.J., McCubbin, F.M. and Bell, A.S. (2015) Crystal chemistry of merrillite from Martian meteorites: Mineralogical recorders of magmatic processes and planetary differentiation. Meteoritics & Planetary Science, 50, 649673.Google Scholar
Sokol, E., Sharygin, V., Kalugin, V., Volkova, N. and Nigmatulina, E. (2002) Fayalite and kirschsteinite solid solutions in melts from burned spoil-heaps, South Urals, Russia. European Journal of Mineralogy, 14, 795807.Google Scholar
Toropov, N.A., Barzakovskiv, V.P., Lapin, V.V., Kurtseva, N.N. and Baykova, A.I. (1972) Pp. 298311 in: Diagrammy Sostoyaniya Silikatnykj Sistem (Phase Diagrams of Silicate Systems). Nauka, Leningrad.Google Scholar
Varela, M.E., Kurat, G., Zinner, E., Métrich, N., Brandstätter, F., Ntaflos, T. and Sylvester, P. (2003) Glasses in D'Orbigny angrite. Geochimica et Cosmochimica Acta, 67, 50275046.Google Scholar
Varela, M.E., Kurat, G., Zinner, E., Hoppe, P., Ntaflos, T. and Nazarov, M.A. (2005) The non-igneous genesis of angrites: Support from trace element distribution between phases in D'Orbigny. Meteoritics & Planetary Science, 40, 409430.Google Scholar
Varela, M.E., Hwang, S.L., Shen, P., Chu, H.T., Yui, T.F., Iizuka, Y., Brandstätter, F. and Abdu, Y.A. (2017) Olivinites in the angrites D’ Orbigny: Vestiges of the pristine reducing conditions during angrites formation. Geochimica et Cosmochimica Acta, 217, 349364.Google Scholar
Warren, P.H. and Davis, A.M. (1995) Consortium investigation of the Asuka 881371 angrite: petrographic, electron microprobe and ion microprobe observations (abstract). Antarctic Meteorites, 20, 257260.Google Scholar
White, T.J. and Zhili, D. (2003) Structural derivation and crystal chemistry of apatites. Acta Crystallographica, B59, 116.Google Scholar
Whitney, D.L. and Evans, B.W. (2010) Abbreviations for names of rock-forming minerals. American Mineralogist, 95, 185187.Google Scholar
Widmer, R., Gfeller, F. and Armbruster, T. (2015) Structural and crystal chemical investigation of intermediate phases in the system Ca2SiO4–Ca3(PO4)2–CaNaPO4. Journal of American Ceramics Society, 98, 39563965.Google Scholar
Xie, X., Yang, H., Gu, X. and Downs, R.T. (2015) Chemical composition and crystal structure of merrillite from the Suizhou meteorite. American Mineralogist, 100, 27532756.Google Scholar
Yamaguchi, G., Ono, Y., Kawamura, S. and Soda, Y. (1963) Synthesis of the modifications of Ca2SiO4 and determination of their powder X-ray diffraction patterns. Journal of Ceramic Society of Japan, 71, 2126.Google Scholar
Yang, J.Y. and Oldroyd, D. (2003) A Chinese palaeontologist, Ma Ting Ying (1899–1979): From coral growth-rings to global tectonics. Epidodes, 26, 1925.Google Scholar
Yashima, M. and Sakai, A. (2003) High-temperature neutron powder diffraction study of the structural phase transition between α and α’ phases in tricalcium phosphate Ca3(PO4)2. Chemical Physics Letters, 372, 779783.Google Scholar
Yashima, M., Sakai, A., Kamiyama, T. and Hoshikawa, A. (2003) Crystal structure analysis of β-tricalcium phosphate Ca3(PO4)2 by neutron powder diffraction. Journal of Solid State Chemistry, 175, 272277.Google Scholar
Supplementary material: File

Hwang et al. supplementary material 1

Hwang et al. supplementary material

Download Hwang et al. supplementary material 1(File)
File 2.7 MB