Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-14T05:17:36.540Z Has data issue: false hasContentIssue false

Oberwolfachite, SrFe3+3(AsO4)(SO4)(OH)6, a new alunite-supergroup mineral from the Clara mine, Schwarzwald, Germany and Monterniers mine, Rhône, France

Published online by Cambridge University Press:  02 August 2021

Nikita V. Chukanov*
Affiliation:
Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow region, 142432Russia Faculty of Geology, Moscow State University, Vorobievy Gory, Moscow, 119991Russia
Gerhard Möhn
Affiliation:
Dr.-J.-Wittemannstrasse 5, 65527Niedernhausen, Germany
Fabrice Dal Bo
Affiliation:
Natural History Museum, University of Oslo, PO Box 1172, Blindern, 0318Oslo, Norway
Natalia V. Zubkova
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, Moscow, 119991Russia
Dmitry A. Varlamov
Affiliation:
Institute of Experimental Mineralogy, Russian Academy of Sciences, Chernogolovka, Moscow region, 142432Russia
Igor V. Pekov
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, Moscow, 119991Russia
Laurent Jouffret
Affiliation:
Institut de Chimie de Clermont-Ferrand, CNRS, Université Clermont Auvergne, 63000Clermont-Ferrand, France
Jean-Marc Henot
Affiliation:
Laboratoire Magmas et Volcans, CNRS, Université Clermont Auvergne, 63000Clermont-Ferrand, France
Pascal Chollet
Affiliation:
Les Emerins, 03430Vieure, France
Yannick Vessely
Affiliation:
Route du champ tout seul 1238, 71600Hautefond, France
Henrik Friis
Affiliation:
Natural History Museum, University of Oslo, PO Box 1172, Blindern, 0318Oslo, Norway
Dmitry A. Ksenofontov
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, Moscow, 119991Russia
Atali A. Agakhanov
Affiliation:
Fersman Mineralogical Museum of the Russian Academy of Sciences, Leninsky Prospekt 8-2, Moscow, 119071Russia
Sergey N. Britvin
Affiliation:
Department of Crystallography, St Petersburg State University, Universitetskaya Nab. 7/9, 199034St Petersburg, Russia
Joy Desor
Affiliation:
Im Langenfeld 4, 61350Bad Homburg, Germany
Natalia N. Koshlyakova
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, Moscow, 119991Russia
Dmitry Yu. Pushcharovsky
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, Moscow, 119991Russia
*
*Author for correspondence: Nikita V. Chukanov, Email: chukanov@icp.ac.ru

Abstract

The new beudantite-group mineral oberwolfachite, ideally SrFe3+3(AsO4)(SO4)(OH)6, was discovered in two localities: Clara mine, Oberwolfach, Schwarzwald, Baden-Württemberg, Germany (holotype) and Monterniers mine, Lantignié, Rhône, Auvergne-Rhône-Alpes, France (cotype). The associated minerals are quartz, baryte, hematite, illite, goethite, beudantite and dussertite (Clara) and arsenogoyazite, jarosite, graulichite-(Ce), goethite and hematite (Monterniers). Oberwolfachite forms yellow to brown platy crystals up to 1 mm across or thick outer zones of mixed (oberwolfachite–beudantite) crystals up to 3 mm across. The lustre is adamantine and the streak is yellow. A distinct cleavage on {0001} is observed. Calculated density is 3.874 g⋅cm–3. The infrared spectra are given. The chemical composition of the holotype/cotype samples are (wt.%, b.d.l. = below detection limit): K2O 1.25/1.86, SrO 6.41/11.15, BaO 8.13/0.45, PbO 2.18/b.d.l., Al2O3 0.16/0.23, Fe2O3 38.99/39.98, La2O3 1.68/not determined, Ce2O3 1.28/2.06, P2O5 0.12/b.d.l., As2O5 17.55/16.55, SO3 12.86/14.99, H2O (calculated) 8.72/9.05, total 99.33/96.62. The empirical formula of the holotype sample is (Sr0.38Ba0.33K0.16Pb0.06La0.06Ce0.05)Σ1.04(Fe3+3.03Al0.02)Σ3.05[(SO4)1.00(AsO4)0.95(PO4)0.01](O6.16H6.00). The crystal structures of both samples were determined using single-crystal X-ray diffraction data and refined to R = 3.13% (holotype, 293 K) and 2.65% (cotype, 170 K). Oberwolfachite is trigonal, R${\bar 3}$m, with a = 7.3270(3) Å, c = 17.0931(9) Å and V = 794.70(8) Å3 (holotype), and a = 7.298(2) Å, c = 16.908(3) Å and V = 779.8(4) Å3 (cotype); Z = 3. The strongest lines of the powder X-ray diffraction pattern of holotype [d, Å (I, %)(hkl)] are: 5.95 (56)(101), 3.664 (37)(110), 3.117 (16)(021), 3.082 (100)(113), 2.548 (15)(024), 2.280 (22)(107), 1.983 (26)(303) and 1.832 (19)(220).

Type
Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Koichi Momma

References

Bayliss, P., Kolitsch, U., Nickel, E.H. and Pring, A. (2010) Alunite supergroup: recommended nomenclature. Mineralogical Magazine, 74, 919927.CrossRefGoogle Scholar
Blount, C.W. (1977) Barite solubilities and thermodynamic quantities up to 300°C and 1400 bars. American Mineralogist, 62, 942957.Google Scholar
Britvin, S.N., Dolivo-Dobrovolsky, D.V. and Krzhizhanovskaya, M.G. (2017) Software for processing the X-ray powder diffraction data obtained from the curved image plate detector of Rigaku RAXIS Rapid II diffractometer. Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 146, 104107 [in Russian].Google Scholar
Chukanov, N.V. (2014) Infrared Spectra of Mineral Species: Extended Library. Springer-Verlag GmbH, Dordrecht–Heidelberg–New York–London. 1716 pp.CrossRefGoogle Scholar
Chukanov, N.V. and Chervonnyi, A.D. (2016) Infrared Spectroscopy of Minerals and Related Compounds. Springer: Cham–Heidelberg–Dordrecht–New York–London. 1109 pp.CrossRefGoogle Scholar
Chukanov, N.V., Zubkova, N.V., Möhn, G., Varlamov, D.A., Pekov, I.V., Ksenofontov, D.A., Agakhanov, A.A., Britvin, S.N., Koshlyakova, N.N., Desor, J., Ermolaeva, V.N. and Pushcharovsky, D.Y. (2021) Oberwolfachite, IMA 2021-010, in: CNMNC Newsletter 61. Mineralogical Magazine, 85, https://doi.org/doi.org/10.1180/mgm.2021.48Google Scholar
Gastineau, J., Dietrich, J.-E., Galvier, J. and Schwab, P.-N. (1999) Le gisement de fluorite et barytine de Lantignié, Rhône, France. Le Règne Minéral, 26, 526 [in French].Google Scholar
Giuseppe, G. and Tadini, C. (1987) Corkite, PbFe3(SO4)(PO4)(OH)6, its crystal structure and ordered arrangement of the tetrahedral cations. Neues Jahrbuch fur Mineralogie, 1987, 7181.Google Scholar
Giuseppetti, G. and Tadini, C. (1989) Beudantite: PbFe3(SO4)(AsO4)(OH)6, its crystal structure, tetrahedral site disordering and scattered Pb distribution. Neues Jahrbuch für Mineralogie, Monatshefte, 27–33.Google Scholar
Hak, J., Johan, Z., Kvaček, M. and Liebsche, W. (1969) Kemmlitzite, a new mineral of the woodhouseite group. Neues Jahrbuch für Mineralogie, Monatshefte, 201212.Google Scholar
Kaiser, H. (1984) Die Grube Clara zu Wolfach im Schwarzwald. Karl Schillinger Verlag: Freiburg im Breisgau. 102 pp. [in German].Google Scholar
Kato, T. (1987) Further refinement of the goyazite structure. Mineralogical Journal, 13, 390396.CrossRefGoogle Scholar
Mandarino, J.A. (1981) The Gladstone-Dale relationship. IV. The compatibility concept and its application. The Canadian Mineralogist, 41, 9891002.Google Scholar
Momma, K. and Izumi, F. (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44, 12721276.CrossRefGoogle Scholar
Pouchou, J.L. and Pichoir, F. (1984) A new model for quantitative X-ray microanalysis. I. Application to the analysis of homogeneous samples. La Recherche Aérospatiale, 3, 1338.Google Scholar
Rigaku Oxford Diffraction (2018) CrysAlisPro Software System, v. 1.171.39.46, Rigaku Corporation, Oxford, UK.Google Scholar
Sheldrick, G.M. (2002) SADABS, Version 2.05. A Software for Empirical Absorption Correction. University of Göttingen, Göttingen.Google Scholar
Sheldrick, G.M. (2015) Crystal structure refinement with SHELXL. Acta Crystallographica, C71, 38.Google Scholar
Szymański, J.T. (1988) The crystal structure of beudantite, Pb(Fe,Al)3((As,S)O4)2(OH)6. The Canadian Mineralogist, 26, 923932.Google Scholar
Walenta, K. (1966) Beiträge zur Kenntnis seltener Arsenatmineralien unter besonderer Berücksichtigung von Vorkommen des Schwarzwaldes. 3. Folge. Tschermaks Mineralogische und Petrographisdche Mitteilungen, 11, 121164 [in German].CrossRefGoogle Scholar
Walenta, K. (1975) Die Sekundärmineralien des Schwerspatganges der Grube Clara (The secondary minerals of the barite vein of the Clara mine near Oberwolfach, central Black Forest). Der Aufschluss, 26: 369411 [in German].Google Scholar
Zhen-Wu, B.Y., Dideriksen, K., Belova, D.A., Raahauge, P.J. and Stipp, S.L.S. (2014) A comparison of standard thermodynamic properties and solubility data for baryte, Ba2+(aq) and SO42– (aq). Mineralogical Magazine, 78, 15051515.CrossRefGoogle Scholar
Supplementary material: File

Chukanov et al. supplementary material

Figure 4S

Download Chukanov et al. supplementary material(File)
File 112 KB