Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-10T12:37:31.587Z Has data issue: false hasContentIssue false

Pampaloite, AuSbTe, a new mineral from Pampalo gold mine, Finland

Published online by Cambridge University Press:  04 July 2018

Anna Vymazalová*
Affiliation:
Czech Geological Survey, Geologická 6, 152 00 Prague 5, Czech Republic
Kari Kojonen
Affiliation:
Merivirta 6 B 36, FI- 02320 EspooFinland
František Laufek
Affiliation:
Czech Geological Survey, Geologická 6, 152 00 Prague 5, Czech Republic
Bo Johanson
Affiliation:
Geological Survey of Finland, P.O.Box 96, FI-02151 Espoo, Finland
Chris J. Stanley
Affiliation:
Department of Earth Sciences, Natural History Museum, London SW7 5BD, UK
Jakub Plášil
Affiliation:
Institute of Physics, AS CR v.v.i. Na Slovance 2, 182 21, Prague 8, Czech Republic
Patricie Halodová
Affiliation:
Czech Geological Survey, Geologická 6, 152 00 Prague 5, Czech Republic
*
*Author for correspondence: Anna Vymazalova, Email: anna.vymazalova@geology.cz

Abstract

Pampaloite, AuSbTe, is a new mineral discovered in the Pampalo gold mine, 65 km east of Joensuu, Finland. It forms anhedral grains (up to ~20 μm) intergrown with gold, frohbergite and altaite. Pampaloite is brittle and has a metallic lustre. Values of VHN25 lie between 245 and 295 kg/mm2, with a mean value of 276 kg/mm2, corresponding to a Mohs hardness of ~4–5 (measured on synthetic material). In plane-polarised light, pampaloite is white with medium to strong bireflectance, weak reflectance pleochroism from slightly pinkish brown to slightly bluish white (only visible in grains of synthetic material containing multiple orientations), and strong anisotropy, with blue to light brown rotation tints; it exhibits no internal reflections. Reflectance values of pampaloite in air (R1,R2 in %) are: 60.0, 62.5 at 470 nm, 62.5, 64.8 at 546 nm, 63.2, 65.6 at 589 nm and 63.7, 66.0 at 650 nm. Ten electron-microprobe analyses of natural pampaloite give an average composition: Au 44.13, Sb 27.44 and Te 28.74, total 100.31 wt.%, corresponding to the empirical formula Au1.00Sb1.00Te1.00 based on 3 atoms; the average of eleven analyses on synthetic pampaloite is: Au 44.03, Sb 27.26, and Te 29.08, total 100.38 wt.%, corresponding to Au0.99Sb1.00Te1.01. The density, calculated on the basis of the empirical formula, is 9.33 g/cm3.The mineral is monoclinic, space group C2/c, with a = 11.947(3), b = 4.481(1) Å, c = 12.335(3) Å, β = 105.83(2)°, V = 635.3(3) Å3 and Z = 8. The crystal structure was solved and refined from the single-crystal X-ray-diffraction data of synthetic AuSbTe. The pampaloite crystal structure can be considered as a monoclinic derivative of the CdI2 structure composed of [AuTe3Sb3] octahedra. The strongest lines in the powder X-ray diffraction pattern of synthetic pampaloite [d in Å (I) (hkl)] are: 4.846(24)($\bar{2}$02), 3.825(18)(111), 2.978(100)($\bar{3}$11), 2.968(50)(004), 2.242(25)(020), 2.144(55)(313), 2.063(33)($\bar{3}$15) and 1.789(18)(024).

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: G. Diego Gatta

References

Adenis, C., Langer, V. and Lindqvist, O. (1989) Reinvestigation of the structure of tellurium. Acta Crystallographica, C45, 941942.Google Scholar
Afifi, A.M., Kelly, W.C. and Essene, E.J. (1988) Phase relations among tellurides, sulphides and oxides; II. Applications to telluride-bearing ore deposits. Economic Geology, 83, 377394.Google Scholar
Anderson, T. and Krause, H.B. (1974) Refinement of the Sb2Te3 and Sb2Te2Se structures and their relationship to nonstoichiometric Sb2Te3–ySey compounds. Acta Crystallographica, B30, 13071310.Google Scholar
Barrett, C.S., Cucka, P. and Haefner, K. (1963) The crystal structure of antimony at 4.2, 78 and 298 K. Acta Crystallographica, 16, 451453.Google Scholar
Bindi, L. and Cipriani, C. (2004) Ordered distribution of Au and Ag in the crystal structure of muthmannite, AuAgTe2, a rare telluride from Sacarîmb, western Romania. American Mineralogist, 89, 15051509.Google Scholar
Bindi, L. and Keutsch, F.N. (2018) Old defined minerals with complex, still unresolved structures: the case of stützite, Ag5–xTe3. Zeitschrift für Kristallographie, 233, 247253.Google Scholar
Bindi, L., Arakcheeva, A. and Chapuis, G. (2009) The role of silver on the stabilization of the incommensurately modulated structure in calaverite, AuTe2. American Mineralogist, 94, 728736.Google Scholar
Bindi, L., Paar, W.H. and Lepore, G.O. (2018) Montbrayite, (Au,Ag,Sb,Pb,Bi)23(Te,Sb,Pb,Bi)38, from the Robb–Montbray mine, Montbray, Quebec: crystal structure and revision of the chemical formula. The Canadian Mineralogist, 56, 129142.Google Scholar
Cabri, L.J. (1965) Phase relations in the Au–Ag–Te system and their mineralogical significance. Economic Geology, 60, 15691606.Google Scholar
Dye, M.D. and Smyth, J.R. (2012) The crystal structure and genesis of krennerite Au3AgTe8. The Canadian Mineralogist, 50, 119127.Google Scholar
Endomines, AB (2018) Nettisivut https://endomines.com/Google Scholar
Foecker, A.J. and Jeitschko, W. (2001) The atomic order of the pnictogen and chalcogen atoms in equiatomic ternary compounds T Pn Ch (T = Ni, Pd; Pn = P, As, Sb; Ch = S, Se, Te). Journal of Solid State Chemistry, 162, 6978.Google Scholar
Furuseth, S., Selte, K. and Kjekshus, A. (1965) Redetermined crystal structures of PdAs2, PdSb2, PtP2, PtAs2, PtSb2, alpha–PtBi2, and AuSb2. Acta Chemica Scandinavica, 19, 735741.Google Scholar
Johanson, B. and Kojonen, K. (1989) Ore mineralogy of gold occurrences in the Hattu schist belt, Ilomantsi, eastern Finland. Current Research 1988, Geological Survey of Finland, Special Paper, 10, 4952.Google Scholar
Kojonen, K., Johanson, B., O'Brien, H. and Pakkanen, L. (1993) Mineralogy of gold occurrences in the late Archean Hattu schist belt, Ilomantsi, eastern Finland. Geological Survey of Finland, Special paper, 17, 233271Google Scholar
Kojonen, K., Johanson, B. and Pakkanen, L. (1994) Three new telluride minerals from Archean gold deposits in the Hattu schist belt, Ilomantsi, eastern Finland. Abstract volume in IMA 16th General meeting in Pisa Italy, 4–9 September 1994, p. 209–210.Google Scholar
Nakamura, Y. and Ikeda, K. (2002) Isothermal phase relations in the Au–Sb–Te system at 350°C, Neues Jahrbuch für Mineralogie Monatshefte, H6, 276–288.Google Scholar
Nurmi, P.A., Sorjonen-Ward, B. and Damstén, M. (1993) Geological setting, characteristics and exploration history of mesothermal gold occurrences in the late Archean Hattu schist belt Ilomantsi, eastern Finland. Pp 193231 in: Geological Development, Gold Mineralization and Exploration Methods in the Late Archean Hattu Schist Belt, Ilomantsi, Eastern Finland (Nurmi, P.A. and Sorjonen-Ward, P., editors). Geological Survey of Finland, Special Paper 17.Google Scholar
Palatinus, L. and Chapuis, G. (2007) SUPERFLIP – a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. Journal of Applied Crystallography, 41, 786790.Google Scholar
Pertlik, F. (1984) Kristallchemie natürlicher Telluride I. Verfeinerung der Kristallstruktur des Sylvanits, AuAgTe4. Tschermaks Mineralogischeund Petrographische Mitteilungen, 33, 203212.Google Scholar
Petříček, V., Dušek, M. and Palatinus, L. (2014) Crystallographic Computing System JANA2006: General features. Zeitschrift für Kristallographie, 229, 345352.Google Scholar
Rodríguez–Carvajal, J. (2006) FullProf.2k Rietveld profile matching & integrated intensities refinement of X-ray and/ or neutron data (powder and/or single-crystal). Laboratoire Léon Brillouin, Centre d'Etudes de Saclay, Gif-sur-Yvette, France.Google Scholar
Schutte, W.J. and Boer, J.L. (1988) Valence fluctuations in the incommensurately modulated structure of calaverite AuTe2. Acta Crystallographica, B44, 486494.Google Scholar
Smith, D.G.W. and Nickel, E.H. (2007) A System of Codification for Unnamed Minerals: Report of the Sub Committee for Unnamed Minerals of the IMA Commission on New Minerals, Nomenclature and Classification. The Canadian Mineralogist, 45, 9831055.Google Scholar
Vymazalová, A., Kojonen, K., Laufek, F., Johanson, B., Stanley, C.J., Plášil, J. and Halodová, P. (2018) Pampaloite, IMA 2017-096. CNMNC Newsletter No. 41, February 2018, page 231; Mineralogical Magazine, 82, 229233.Google Scholar
Supplementary material: File

Vymazalová et al. supplementary material

Vymazalová et al. supplementary material 1

Download Vymazalová et al. supplementary material(File)
File 14.8 KB