Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T12:17:46.207Z Has data issue: false hasContentIssue false

Paragenesis of Cu-Fe ores from Ocna de Fier-Dognecea (Romania), typifying fluid plume mineralization in a proximal skarn setting

Published online by Cambridge University Press:  05 July 2018

N. J. Cook*
Affiliation:
Geological Survey of Norway, N-7491, Trondheim, Norway
C. L. Ciobanu
Affiliation:
Geological Survey of Norway, N-7491, Trondheim, Norway
*

Abstract

Trace mineral assemblages in the bornite- and chalcopyrite-rich Cu-Fe zone of the Ocna de Fier-Dognecea skarn deposits, Banat, SW Romania provide additional constraints on the genesis of this classic zoned skarn system. Observed assemblages substantiate a model, in which the Cu-Fe zone forms the proximal fluid-plume root of the system. Observed trace mineral assemblages in the magnesian forsterite-bearing skarns crystallized at ~650°C in a volatile-rich environment, evidenced by widespread phlogopite, ludwigite, valleriite and apatite. The entire assemblage thus belongs to the initial stage of skarn formation. Prolonged cooling led to sequential exsolution of trace mineral phases from bornite and chalcopyrite during the retrograde stage, although still at temperatures in excess of 500°C. Bornite is typified by the abundance of exsolved phases along cleavage planes and along crystal margins, notably chalcopyrite and pyrrhotite, but also cobalt pentlandite, carrollite, wittichenite, galena, mawsonite, silver and electrum. Chalcopyrite hosts cobalt pentlandite, carrollite, wittichenite, galena and a sequence of Se- and Te-bearing minerals (kawazulite, bohdanowiczite, hessite, volynskite), along, although not restricted to, grain margins. The assemblage bornite-chalcopyrite-magnetite, with the trace phases, cobalt pentlandite, carrollite, wittichenite and various Se- and Te-bearing minerals represents a characteristic assemblage common to a disparate range of deposits formed at temperatures in excess of 500°C in the presence of volatiles and typified by relatively low fS2 fluids.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Banaś, M., Atkin, D., Bowles, J.F.W. and Simpson, P.R. (1979) Definitive data on bohdanowiczite, a new silver bismuth selenide. Mineral. Mag., 43, 131–3.CrossRefGoogle Scholar
Banaś, M., Atkin, D., Bowles, J.F.W. and Simpson, P.R. (1980) Further studies of bohdanowiczite (AgBiSe2) and some associated minerals. Bull. Mineral., 103, 107–12.Google Scholar
Barton, P.B. and Skinner, B.J. (1979) Sulfide mineral stabilities. Pp 278403 In: Geochemistry of Hydrothermal Ore Deposits, 2nd edition (Barnes, H.L., editor). John Wiley and Sons, New York.Google Scholar
Bate, M.D., Coetzee, M.S. and Smuts, L. (1994) Sectorially arranged valleriite lamellae in ferroan spinel of the transgressive carbonatite, Phalaborwa Complex, South Africa. S. Afr. J. Geol., 97, 149–55.Google Scholar
Bayliss, P. (1991) Crystal chemistry and crystallography of some minerals in the tetradymite group. Amer. Mineral., 76, 257–65.Google Scholar
Berza, T., Constantinescu, E. and Vlad, S.N. (1998) Upper Cretaceous magmatic series and associated mineralisation in the Carpatho-Balkan Orogen. Res. Geol., 48, 291306.CrossRefGoogle Scholar
Cabri, L.J., Petruk, W., Laflamme, J.H.G. and Robitaille, J. (1999) Quantitative mineralogical balances for major and trace elements in samples from Agnico- Eagle Mines Limited, Quebec, Canada. Pp. 177–92 in: Analytical Technology in the Mineral Industries (Cabri, L.J., Bucknam, C.H., Milosavljevic, E.B., Chryssoulis, S.L. and Miller, R.A., editors). The Minerals, Metals and Materials Society.Google Scholar
Ciobanu, C.L. (1999) Study of mineralisation in the skarn deposit at Ocna de Fier, Banat. Unpubl. PhD thesis, Univ. Bucharest (in Romanian).Google Scholar
Ciobanu, C.L. and Cook, N.J. (2000) Intergrowths of bismuth sulphosalts from the Ocna de Fier Fe-skarn deposit, Banat, Southwest Romania. Eur. J. Mineral., 12, 899917.CrossRefGoogle Scholar
Ciobanu, C.L. and Cook, N.J. (2001) A centred, single-source model for Fe-Cu-(Zn-Pb) skarn deposits at Ocna de Fier-Dognecea, SW Romania. Mineral. Deposita (in press).Google Scholar
Codarcea, A. (1931) Geological and petrographical study of the region Ocna de Fier-Bocşa Montană (Caraş-Banat County). An. Inst. Geol. Rom., 15, 1259 (in Romanian).Google Scholar
Constantinescu, E. (1980) Mineralogy and genesis of the skarn deposit at Sasca Montană. Edit. Acad. Rep. Soc. România, Bucharest (in Romanian).Google Scholar
Constantinescu, E., Ilinca, Gh. and Ilinca, A. (1988) Laramian hydrothermal alteration and ore deposition in the Oravit°a-Ciclova area, South-western Banat. D.S. Inst. Geol. Geo. z., 72–73, 1326.Google Scholar
Constantinescu, E. and Udubaşa, G. (1982) Some features of ore fabric, Sasca Montană skarn deposit, Romania. Pp. 434–41 in: Ore Genesis: State of the Art (Amstutz, G.C., El Goresy, A., Frenzel, G., Cluth, C., Moh, G., Wauschkuhn, A. and Zimmerman, P.A., editors). Springer, Berlin.CrossRefGoogle Scholar
Cortellini, E.A. and Chang, L.L.Y. (1980) Phase relations in the lead-bismuth Sulfide, selenide and telluride systems. Geol. Soc. Am. Abstr. with Programs, 12, no. 7, 406.Google Scholar
Dobbe, R.T.M. (1991) Tellurides, selenides and associated minerals in the Tunaberg copper deposits, SE Bergslagen, Central Sweden. Mineral. Petrol., 44, 89106.CrossRefGoogle Scholar
Dobbe, R.T.M. and Oen, I.S. (1994) The polymetallic Cu-Co ores in the central mineralised zone at Tunaberg, Bergslagen, Sweden. Neues Jahrb. Mineral. Abh., 166, 261–94.Google Scholar
England, B.M. and Ostwald, J. (1993) Framboid-derived structures in some Tasman fold belt base-metal sulphide structures, New South Wales, Australia. Ore Geol. Rev., 7, 381412.CrossRefGoogle Scholar
Glatz, A.C. (1967) The Bi2Te3–Bi2S3 system and the synthesis of the mineral tetradymite. Amer. Mineral., 52, 161–70.Google Scholar
Grguric, B.A., Harrison, R.J. and Putnis, A. (2000) A revised phase diagram for the bornite-digenite join from in situ neutron diffraction and DSC experiments. Mineral. Mag., 64, 213–31.CrossRefGoogle Scholar
Grguric, B.A. and Putnis, A. (1998) Compositional controls on phase-transition temperatures in bornite: a differential scanning calorimetry study. Canad. Mineral., 36, 215–27.Google Scholar
Grguric, B.A. and Putnis, A. (1999) Rapid exsolution behaviour in the bornite–digenite series, and implications for natural ore assemblages. Mineral. Mag., 63, 112.CrossRefGoogle Scholar
Guha, J. and Darling, R. (1972) Ore mineralogy of the Louvem copper deposit, Val d'Or, Quebec. Canad. J. Earth Sci., 9, 1596–611.CrossRefGoogle Scholar
Harris, D.C. and Vaughan, D.J. (1972) Two fibrous iron sulphides and valleriite from Cyprus with new data on valleriite. Amer. Mineral., 57, 1037–52.Google Scholar
Iiishi, K., Tomisaka, T., Kato, T. and Takeno, S. (1970) Syntheses of valleriite. Amer. Mineral., 55, 2107–10.Google Scholar
Ilinca, Gh. (1998) The crystal chemistry of bismuth sulphosalts from the Banatitic province. Unpubl. PhD thesis, Univ. Bucharest (in Romanian).Google Scholar
Johan, Z. (1990) Chromian valleriite and associated minerals from the Ransko mafic-ultramafic complex, Czechoslovakia. Neues Jahrb. Mineral. Mon., 269–79.Google Scholar
Johan, Z., Picot, P. and Ruhlmann, F. (1987) The ore mineralogy of the Otish Mountains Uranium Deposit, Quebec: skippenite, Bi2Se2Te and watkinsonite, Cu2PbBi4(Se,S)8, two new mineral species. Canad. Mineral., 25, 625–38.Google Scholar
Kato, A. (1970) Introduction to Japanese Minerals. Geol. Surv. Japan, 1970, 87–8.Google Scholar
Kissling, A. (1967) Mineralogical and Petrographical Studies in the Exoskarn Zone at Ocna de Fier (Banat). Ed. Acad. Rep. Soc. România, Bucharest (in Romanian).Google Scholar
Lindahl, I. (1973) Cobalt pentlandite from Kongsfjell, Nordland and Birtavarre, Northern Troms. Norges geol. Unders., 294, 919.Google Scholar
Marka, G. (1869) Einige Notizen über das Banater-Gebirge. Jahrb. d.k.k. geol. R.A., 19, 318–49.Google Scholar
Marincea, S. (1999) Ludwigite from the type locality, Ocna de Fier, Romania: New data and review. Canad. Mineral., 37, 1343–62.Google Scholar
McQueen, K.G. and Larson, R.A. (1985) The occurrence of wittichenite and Sulfide exsolution textures at the Glen deposit, Wee Jasper, New South Wales. Neues Jahrb. Mineral. Mon., 469–80.Google Scholar
Miller, R. (1981) Kawazulite Bi2Te2Se, related bismuth minerals and selenian covellite from the Northwest Territories. Canad. Mineral., 19, 341–8.Google Scholar
Nesterov, Y.G., Begizov, V.D., Zav'yalov, Y.N., Kryukov, V.K. and Chvileva, T.N. (1985) First discovery of bohdanowiczite in USSR. Zap. Vses. Mineral. Obsch., 114, 212–6 (in Russian).Google Scholar
Nickel, E.H. and Hudson, D.R. (1976) The replacement of chrome spinel by chromian valleriite in sulphide-bearing ultramafic rocks in Western Australia. Contrib. Mineral. Petrol., 55, 265–77.CrossRefGoogle Scholar
Nicolescu, S. (1998) Skarn genesis at Ocna de Fier- Dognecea, South-west Romania. PhD thesis, Univ. Gothenburg, Sweden, A36.Google Scholar
Nicolescu, S. and Cornell, D.H. (1999) P-T conditions during skarn formation in the Ocna de Fier ore district, Romania. Mineral. Deposita, 34, 730–42.CrossRefGoogle Scholar
Nicolescu, S., Cornell, D.H. and Bojar, A.V. (1999) Age and tectonic setting of Bocşa and Ocna de Fier- Dognecea granodiorites (southwest Romania) and of associated skarn mineralisation. Mineral. Deposita, 34, 743–53.CrossRefGoogle Scholar
Nysten, P. (1986) Textural relations of betechtinite and cobalt pentlandite from Långban, Sweden. Geol. Fören. i Stockholms Förh., 108, 135–8.CrossRefGoogle Scholar
Oen, I.S. and Kieft, C. (1976) Silver-bearing wittichenite- chalcopyrite-bornite intergrowths and associated minerals in the Mangualde pegmatite, Portugal. Canad. Mineral., 14, 185–93.Google Scholar
Oen, I.S. and Kieft, C. (1984) Paragenetic relations of Bi-, Ag-, Au- and other tellurides in bornite veins at Glava, Värmland, Sweden. Neues Jahrb. Mineral. Abh., 149, 245–66.Google Scholar
Pauling, L. (1975) The formula, structure, and chemical bonding of tetradymite, Bi14Te13S8, and the phase Bi14Te15S6 . Amer. Mineral., 60, 994–7.Google Scholar
Pertsev, N.N. (1974) Skarns as magmatic and postmagmatic formations. Int. Geol. Rev., 16, 572–82.CrossRefGoogle Scholar
Petrulian, N., Sandu, D. and Popescu, R. (1979) Polymetallic mineralization from Simon Iuda ore body, Ocna de Fier skarn deposit, Banat, Romania. Stud. Tehn. Econ. I.G.G., 16, 131–57 (in Romanian).Google Scholar
Petrunov, R., Dragov, P., Ignatov, G., Neykov, H., Iliev, T., Vasileva, N., Tsatsov, V., Djunakov, S. and Donceva, K. (1992) Hydrothermal PGE-mineralisation in the Elatsite porphyry-copper deposit (Sredna Gora metallogenic zone, Bulgaria ). Comptes Rendues Acad. Bulg. Sci. 45, 3740.Google Scholar
Petzow, G. and Effenberg, G. (1988) Silver-selenium-tellurium. Pp. 567–8 in: Ternary Alloys (Petzow, G. and Effenberg, G., editors). Vch Verlagsgesellschaft, Weinheim, Germany.Google Scholar
Pring, A. (1988) Selenides and Sulfides from Iron Monarch, South Australia. Neues Jahrb. Mineral. Mon., 36–48.Google Scholar
Pringle, G.J. and Thorpe, R.I. (1980) Bohdanowiczite, junoite and laitakarite from the Kidd Creek Mine, Timmins, Ontario. Canad. Mineral., 18, 353–60.Google Scholar
Neues Jahrb. Mineral. Abh., 169, 305–8.Google Scholar
Simon, G., Kesler, S.E. and Essene, E.J. (1997) Phase relations among selenides, Sulfides, tellurides and oxides: II. Applications to selenide-bearing ore deposits. Econ. Geol., 92, 468–84.CrossRefGoogle Scholar
Sugaki, A., Kitakaze, A. and Hayashi, K. (1981) Synthesis of minerals in the Cu-Fe-Bi-S system under hydrothermal conditions and their phase relation. Bull. Mineral., 104, 484–95.Google Scholar
Sugaki, A., Kitakaze, A. and Hayashi, K. (1984) Hydrothermal synthesis and phase relations of the polymetallic Sulfide system, especially on the Cu-Fe- Bi-S system. Pp. 545–83 in: Materials Science of the Earth's Interior (Sunagawa, I., editor). Terra Science Publishing Co., Tokyo.Google Scholar
Talapatra, A.K. (1968) Sulfide mineralisation associated with migmatization in the Southeastern part of the Singhbhum Shear Zone, Bihar, India. Econ. Geol., 63, 156–65.CrossRefGoogle Scholar
Tarkian, M., Hünken, U., Tokmakchieva, M. and Bogdanov, K. (1999) Palladium, Platin, Gold und fluide Einschlüsse in der Porphyry Kupfer Lagerstätte Elacit (Bulgarien). Eur. J. Mineral., 11, Beihefte 1, 226.Google Scholar
Thorpe, R.I., Pringle, G.J. and Plant, A.G. (1976) Occurrence of selenide and sulphide minerals in bornite ore of the Kidd Creek massive sulphide deposit, Timmins, Ontario. Geol. Surv. Canad. Paper, 76-1A, 311–7.Google Scholar
Tracy, R.J. and Frost, B.R. (1991) Phase equilibria and thermobarometry of calcareous, ultrama. c and ma. c rocks, and iron formations. Pp. 207–90 in: Contact Metamorphism (Kerrick, D.M., editor). Reviews in Mineralogy, 26. Mineralogical Society of America, Washington, D.C. CrossRefGoogle Scholar
Tschermak, G. (1874) Ludwigit, ein neues Mineral aus dem Banate. Tschermaks Min. Mitt., 59–66.CrossRefGoogle Scholar
Vlad, S. (1974) The Mineralogy and Genesis of the Skarns at Dognecea. Ed. Acad. Rep. Soc. România, Bucharest (in Romanian).Google Scholar
von Born, I.E. (1774) Briefe über mineralogische Gegenstände, auf seiner Reise durch das Temeswarer Banat, Siebenbürgen, Ober- und Nieder-Hungarn an der Herausgeber derselben, Johann Jakob Ferber, geschrieben. Frankfurtu, Leipzig, 228 pp.Google Scholar
von Cotta, B. (1864) Erzlagerstätten im Banat und in Serbien. W. Braumüller, Vienna, 105 pp.Google Scholar
Wagner, T. and Cook, N.J. (1999) Carrollite and related minerals of the linnaeite group: solid solution and nomenclature in the light of new data from the Siegerland District, Germany. Canad. Mineral., 37, 545–58.Google Scholar
Willgallis, A., Özgür, N. and Siegmann, E. (1990) Seand Te-bearing sulphides in copper ore deposits of Murgul, NE Turkey. Eur. J. Mineral., 2, 145–8.CrossRefGoogle Scholar
Yusa, K., Kitakaze, A. and Sugaki, A. (1979) Synthesized bismuth-tellurium-sulfur system minerals. Sci. Rep. Tohoku Univ., 3rd ser., 14, 121–33.Google Scholar
Žák, L., Megarskaya, L. and Mumme, W.G. (1992) Rezbányite from Ocna de Fier (Vaskö): a mixture of bismuthinite derivatives and cosalite. Neues Jahrb. Mineral. Mon., 6979.Google Scholar
Zav'yalov, Y.N. (1985) Isostructural characteristics of bohdanowiczite and volynskite. Zap. Vses. Mineral. Obsch., 114, 434–40 (in Russian).Google Scholar