Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-10T10:36:13.627Z Has data issue: false hasContentIssue false

Petrology and geochemistry of xenoliths in lamprophyres from the Deccan Traps: implications for the nature of the deep crust boundary in western India

Published online by Cambridge University Press:  05 July 2018

A. G. Dessai
Affiliation:
Department of Geology, Goa University, Taleigao Plateau, Goa 403 206, India
O. Vaselli
Affiliation:
Department of Earth Sciences, University of Florence, 50121 Florence, via G. la Pira, 4, Italy

Abstract

Alkaline lamprophyre intrusives from the western Deccan Traps (Murud-Janjira, south of Bombay) host rare lithospheric xenoliths and megacrysts. The xenolith suite consists of clinopyroxenites and granulites which show eclogitic affinities. The former have transitional (porphyroclastic to equigranular) textures whereas the latter are porphyroclastic, xenomorphic to meta-igneous. The textural features provide evidence of ductile-brittle deformation. The protoliths of the pyroxenite and granulite xenoliths were formed as cumulates of alkaline and sub-alkaline magmas respectively.

Mineral chemistry and geochemical data for the xenoliths bear testimony to the metasomatized nature of the deep crust. The xenolith data coupled with the geophysical evidence indicate that the lower crust beneath Murud-Janjira is dominated by mafic granulites and pyroxenites. The latter have under- and intra-plated the continental crust beneath the region.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agarwal, B.N.P., Thakur, N.K., and Negi, J.G., (1992) Magsat data and Curie depth below Deccan flood basalts (India). Pageoph., 138, 678–91.Google Scholar
Auden, J.B., (1949) Dykes in Western India. A discussion of their relationship with Deccan Traps. Trans. Nat. Inst. Sci. India. 3, 123–37.Google Scholar
Balasundaram, M.S., and Balasubramanyan, M.N., (1973) Geochronology of the Indian Precambrian. Geol. Soc. Malaysia Bull., 6, 213–26.Google Scholar
Basu, A.R., (1978) Trace elements and Sr – isotopes in some mantle derived hydrous minerals and their significance. Geochim. Cosmochim. Acta, 42, 659–68.CrossRefGoogle Scholar
Basu, A.R., Renne, P.R., Dasgupta, D.K., Teichmenn, F. and Poreda, R.G., (1993) Early and late alkali igneous pulses and a high 3He plume origin for the Deccan Flood Basalts. Science, 261, 902–6.CrossRefGoogle Scholar
Best, M.G., (1975) Amphibole bearing cumulate inclusions, Grand Canyon, and their bearing on undersaturated hydrous magmas in the upper mantle. J. Petrol., 16, 212–36.CrossRefGoogle Scholar
Boettcher, A.L., and O'Neil, J.R., (1980) Stable isotope, chemical and petrographical studies of high pressure amphiboles and micas: evidence for metasomatism in the mantle source regions of alkali basalts and kimberlites. Amer. J. Sci., 280A, 594621.Google Scholar
Brandon, A.D., and Meen, J. K. (1995) Nd isotope evidence for the position of southernmost India terrains within East Gondwana. Precamb. Res., 70, 269–80.CrossRefGoogle Scholar
Brown, G.M., Pinset, R.H., Coisy, P. (1980) The petrology of spinel peridotite xenoliths from Massif Central, France. Amer. J. Sci., 280A, 471–98.Google Scholar
Choudhary, A.K., Harris, N.B.W., van Calsteren, P. and Hawkesworth, C. J. (1992) Pan-African charnockite formation in Kerala, South India. Geol. Mag., 129, 257–64.CrossRefGoogle Scholar
Courtillot, V.E., Feraud, G., Maluski, H., Vandamne, D., Moreau, M.G., and Besse, J. (1988) Deccan flood basalts and the Cretaceous-Tertiary boundary. Nature, 333, 843–6.CrossRefGoogle Scholar
Cox, K.G., (1983) The Deccan Traps and the Karoo: stragraphic implications of possible hot spot origins. IAVCEI, Hamburg Meeting, Abstract vol., p. 96.Google Scholar
Cox, K.G., and Hawkesworth, C.J., (1985) Geochemical stratigraphy of the Deccan Traps at Mahableshwar, Western Ghats, India with implications for open system magmatic processes. J. Petrol., 26, 355–77.CrossRefGoogle Scholar
Crawford, A.R., (1969) Reconnaissance Rb-Sr dating of the Precambrian rocks of the southern peninsular India. J. Geol. Soc. Ind., 10, 117–66.Google Scholar
Dessai, A.G., (1985) Ultramafic xenoliths(?) in lamprophyre dykes from Murud-Janjira, Raigarh district, Maharashtra. Curr. Sci., 54, 1235–8.Google Scholar
Dessai, A.G., (1987) Geochemistry and petrology of xenolith bearing alkaline lamprophyres from Murud-Janjira, Raigad district, Maharashtra. J. Geol. Soc. Ind., 30, 6171.Google Scholar
Dessai, A.G., (1994) Magma fractionation and mixing in a nephelinite plug associated with Deccan magmatism at Murud-Janjira, south of Bombay. J. Geol. Soc. Ind., 43, 493509.Google Scholar
Dessai, A.G., (1996) Geochemistry of the mantle beneath the Deccan Traps, south of Bombay. Gondwana Geol. Mag. Spec. Vol., 2, 201–12.Google Scholar
Dessai, A.G., and Bertrand, H. (1995) The ‘Panvel Flexure’ along the Western Indian continental margin: an extensional fault structure related to Deccan magmatism. Tectonophys., 241, 165–78.CrossRefGoogle Scholar
Dessai, A.G., and Viegas, A.A.A.A., (1995) Multigeneration mafic dyke swarm related to Deccan magmatism, south of Bombay: implications on the evolution of the western continental margin. In Dyke Swarms of Peninsular India (Devaraju, T.C., ed.), Geol. Soc. Ind. Mem., 33, 435–51.Google Scholar
Dessai, A.G., Rock, N.M.S., Griffin, B.J., and Gupta, D. (1990) Mineralogy and petrology of some xenolith bearing alkaline dykes associated with Deccan magmatism, south of Bombay, India. Eur. J. Miner., 2, 667–85.CrossRefGoogle Scholar
Dewey, C.W., and Stephens, W.E., (1992) Deccan related magmatism west of Seychelles-India rift. In Magmatism and the causes of continental break-up (Storey, B.C., Alabaster, T. and Pankhurst, R.J., eds), Geol. Soc. Lond. Spec. Publ., 68, 271–91.Google Scholar
Downes, H. (1993) The nature of the lower continental crust of Europe: petrological and geochemical evidence from xenoliths. Phys. Earth Planet. Inter., 79, 195–218.CrossRefGoogle Scholar
Droop, G.T.R., (1987) A general equation for estimating Fe3+ concentrations in ferromegnesian silicates and oxides from microprobe analysis using stoichiometric criteria. Mineral. Mag., 51, 431–5.CrossRefGoogle Scholar
Duncan, R.A., and Pyle, D.G., (1988) Rapid eruption of Deccan flood basalts, western India. In Deccan Flood Basalts (Subbarao, K.V., ed.), Mem. Geol. Soc. Ind., 10, 19.Google Scholar
Edgar, A.D., (1987) The genesis of alkaline magmas with emphasis on their source region: inferences from experimental studies. In Alkaline Igneous Rocks. (Upton, B.G.J., ed.), Geol. Soc. Lond., Spec. Publ., 30, 2952.Google Scholar
Frey, F.A., and Green, D.H., (1974) The mineralogy, geochemistry and origin of lherzolite inclusions in Victorian basanites. Geochim. Cosmochim. Acta, 38, 1023–59.CrossRefGoogle Scholar
Frey, F.A., and Prinz, M. (1978) Ultramafic inclusions from San Carlos Arizona: petrologic and geochemical data bearing on their petrogenesis. Earth Planet. Sci. Lett., 38, 129–76.CrossRefGoogle Scholar
Griffin, W.L., and O'Reilly, S.Y., (1987) Is the continental Moho the crust-mantle boundary? Geology, 15, 241–4.2.0.CO;2>CrossRefGoogle Scholar
Griffin, W.L., Carswell, D.A., and Nixon, P.H., (1979) Lower crustal granulites from Lesotho, South Africa. In The mantle sample: inclusions in kimberlites and other volcanics (Boyd, F.R. and Meyer, H.O.A., eds), Proc. 2nd Int. Kimberlite Conf.,American Geophysical Union, Washington, D.C., pp. 5986.CrossRefGoogle Scholar
Halliday, A.N., Dickin, A.P., Hunter, R.H., Davis, G.R., Dempster, T.J., Hamilton, P.J., and Upton, B.G.J., (1993) Formation and composition of the lower continental crust evidence from a Scottish xenolith suite. J. Geophys. Res., 98(B1), 581607.CrossRefGoogle Scholar
Hansen, E.C., Hickman, N.H., Grant, N.K., and Newton, R.C., (1985) Pan-African age of ‘Peninsular Gneiss’ near Madurai, south India. (Abst.) EOS (Trans. Amer. Geophys. Union), 66, 419–20.Google Scholar
Harris, N.B.W. and Santosh, M. (1993) Geochronological constraints on granulite formation in southern India and Sri Lanka. Geol. Soc. Ind. Mem., 25, 361–79.Google Scholar
Harte, B. (1983) Mantle peridotites and processes – the kimberlite sample. In Continental basalts and mantle xenoliths (Hawkesworth, C.J. and Norry, M.J. eds), Shiva Publishing Ltd., Nantwich, UK, pp. 4691.Google Scholar
Holmes, A. (1965) Principles of Physical Geology. Thomas Nelson and Sons, London, 1288 p.Google Scholar
Hooper, P.R., (1990) The timing of crustal extension and the eruption of continental flood basalts. Nature, 345, 246249 CrossRefGoogle Scholar
Irving, A.J., (1974) Pyroxene-rich ultramafic xenoliths in the Newer Basalts of Victoria, Australia. Neus Jahrb. Mineral. Abh., 120, 147–67.Google Scholar
Irving, A.J., (1980) Petrology and geochemistry of composite xenoliths in alkali basalts and implications for magmatic processes within the mantle. Amer. J. Sci., 280A, 389426.Google Scholar
IUGS Subcommission on the systematics of igneous rocks (1973) Plutonic rocks: classification and nomenclature. Geotimes, 18, 2630.Google Scholar
Jones, A.P., Smith, J.V., Dawson, J.B., and Hansen, E.C., (1983) Metamorphism, partial melting and K metasomatism of garnet-scapolite-kyanite granulite xenoliths from Lashaine, Tanzania. J. Geol., 91, 143–65.CrossRefGoogle Scholar
Kaila, K.L., (1988) Mapping the thickness of Deccan Trap flows in India from DSS studies and inferences about a hidden Mesozoic basin in the Narmada-Tapti region. In Deccan Flood Basalts (Subbarao, K.V., ed.), Mem. Geol. Soc. Ind., 10, 91116.Google Scholar
Kaila, K.L., Murthy, P.R.K., Rao, V.K., and Kharatchko, G.E., (1981) Crustal structure from deep seismic sounding along Koyna II (Kelsi-Loni) profile in the Deccan Trap India. Tectonophys., 73, 365–84.CrossRefGoogle Scholar
Kempton, P.D., Downes, H., Sharkov, E.V., Vetrin, V.R., Ionov, D.A., Carswell, D.A., and Beard, A. (1995) Petrology and geochemistry of xenoliths from the northern Baltic shield: evidence for partial melting and metasomatism in the lower crust beneath an Archaean terraine. Lithos, 36, 157–84.CrossRefGoogle Scholar
Kempton, P.D., Downes, H. and Embey-Isztin, A. (1997) Mafic granulite xenoliths in Neogene alkali basalts from the western Pannonian basin: insight into the lower crust of a collapsed orogen J. Petrol., 38, 941–70.CrossRefGoogle Scholar
Kopylova, M.G., O'Reilly, S.Y., and Genshaft, Yu. S. (1995) Thermal state of the lithosphere beneath central Mongolia: evidence from deep seated xenoliths from Shavaryn-Saram volcanic centre in the Tariat depression, Hangai, Mongolia. Lithos, 36, 243255.CrossRefGoogle Scholar
Krishnamurthy, P., Pande, K., Gopalan, K. and MacDougall, J.D., (1988) Upper mantle xenoliths in alkali basalts related to Deccan Trap volcanism. In Deccan Flood Basalts (Subbarao, K.V., ed.), Mem. Geol. Soc. Ind., 10, 5367.Google Scholar
Kroner, A. (1981) Precambrian plate tectonics. In Precambrian Plate Tectonics (Kroner, A., ed.) Elsevier Amsterdam, pp. 5790.Google Scholar
Kuno, H. and Aoki, K. (1970) Geochemistry of ultramafic nodules and their bearing on the origin of basaltic magmas. Phys. Earth Planet. Interior, 3, 273301.CrossRefGoogle Scholar
Le Maitre, R.W., (1976) Some problems of the projection of chemical data into mineralogical classification. Contrib. Mineral. Petrol., 56, 181–9.CrossRefGoogle Scholar
Mahoney, J.J., (1988) Deccan Traps. In Continental Flood Basalts (MacDougall, J.D., ed.), Kluwer, Dordrecht, Netherlands, 151–94.CrossRefGoogle Scholar
Mahoney, J.J., MacDougall, J.D., Lugmair, G.W., Gopalan, K. and Krishnamurthy, P. (1985) Origin of contemporaneous tholeiite and K–rich alkali lavas; a case study from the northern Deccan Plateau India. Earth Planet. Sci. Lett., 72, 3953.CrossRefGoogle Scholar
Menzies, M. and Murthy, V.R., (1980) Nd and Sr isotope geochemistry of hydrous mantle nodules and their host alkali basalts: implications for local heterogeneities in metasomatically veined mantle. Earth Planet. Sci. Lett., 46, 323–34.CrossRefGoogle Scholar
Mercier, J.C.C., (1980) Single pyroxene thermobarometry. Tectonophys., 70, 137.CrossRefGoogle Scholar
Mercier, J.C.C., and Nicholas, A. (1975) Textures and fabrics of upper mantle peridotites as illustrated by xenoliths from basalts. J. Petrol., 16, 454–87.CrossRefGoogle Scholar
Mitchell, R.H., (1986) Kimberlites: Mineralogy, Geochemistry and Petrology. Plenum Press, New York, 442 p.Google Scholar
Morgan, P. (1989) Heat flow in the Earth. In The Encyclopaedia of Solid Earth Geophysics (James, E.D., ed.), Van-Nostrand Rheinhold Co., New York, pp. 624–46.Google Scholar
Morgan, W.J., (1981) Hot-spot tracks and the opening of Atlantic and Indian oceans. In The Sea (Emiliani, C., ed.), Wiley Interscience, New York, 7, 443–87.Google Scholar
Morimoto, M., and eight others (1988) Nomenclature of pyroxenes. Mineral. Mag., 52, 535–50.CrossRefGoogle Scholar
Mottana, A. (1986) Crystal chemical evaluation of garnet and omphacite microprobe analysis: its bearing on the classification of eclogites. Lithos, 19, 171–86.CrossRefGoogle Scholar
Negi, J.G., Pandey, O.P., and Agarwal, P.K., (1986) Supermobility of hot Indian lithosphere. Tectonophys., 131, 147–56.CrossRefGoogle Scholar
Negi, J.G., Agarwal, P.K., and Pandey, C.P., (1987) Large variation in Curie depth and lithospheric thickness beneath the Indian subcontinent and case for magnetothermometry. Geophys. J. R. Astron. Soc., 88, 763–75.CrossRefGoogle Scholar
Newton, R.C., and Perkins, D. (1982) Thermodynamic calibration of geothermometers based on the assemblage garnet-plagioclase-orthopyroxene (clinopyroxene)-quartz. Amer. Mineral., 67, 203–22.Google Scholar
O'Reilly, S.Y., and Griffin, W.L., (1985) A xenolith- derived geotherm for southeastern Australia and its geophysical implications. Tectonophys., 111, 41–63.CrossRefGoogle Scholar
O'Reilly, S.Y., and Griffin, W.L., (1987) Eastern Australia: 4000 km of mantle samples. In Mantle Xenoliths (Nixon, P.H., ed.), Wiley, London, pp. 267–80.Google Scholar
O'Reilly, S.Y., and Griffin, W.L., (1995) Moho and petrologic crust-mantle boundary coincide under southeastern Australia. Comment. Geology, 22, 666–7.2.3.CO;2>CrossRefGoogle Scholar
O'Reilly, S.Y., Jackson, I. and Bezant, C. (1990) Seismic and thermal parameters of upper mantle rocks from eastern Australia: implications of seismic modelling. Tectonophys., 185, 67–82.CrossRefGoogle Scholar
O'Reilly, S.Y., Nicholls, I.A., and Griffin, W.L., (1989) Xenoliths and megacrysts of mantle origin. In Intraplate Volcanism in Eastern Australia and New Zealand (Johnson, R.W., ed.), 408 p.Google Scholar
Peng, Z.G., Mahoney, J., Hooper, P., Harris, C. and Bean, J. (1994) A role for lower continental crust in flood basalt genesis? Isotopic and incompatible element study of lower six formations of the western Deccan Traps. Geochim. Cosmochim. Acta, 58, 267–88.CrossRefGoogle Scholar
Powell, R. and Holland, T.J.B., (1988) An internally consistent data set with uncertainties and correlations: 3. Applications to geobarometry, worked examples and a computer programme. J. Metam. Geol., 6, 173204.CrossRefGoogle Scholar
Shanker, Ravi (1988) Heat flow map of India and discussion on its geological and economic significance. Indian Minerals, 42, 89–110.Google Scholar
Richards, M.A., Duncan, R.A., and Courtillot, V. (1989) Flood basalts and hot spot tracks: Plume heads and tails. Science, 246, 103–7.CrossRefGoogle ScholarPubMed
Rogers, N.W., (1977) Granulite xenoliths from Lesotho kimberlite and the lower continental crust. Nature, 270, 681–4.CrossRefGoogle Scholar
Rudnick, R.L., (1992) Xenolith-samples of the lower continental crust. In The Continental Crust (Fountain, D.M., Arculus, R.J. and Kay, R.W., eds) Elsevier, New York, pp. 269316.Google Scholar
Santosh, M., Kamagi, H., Yoshida, M. and NandaKumar, V. (1992) Pan-African charnockite formation in East Gondwana: geochronology (Sm-Nd and Rb-Sr) and petrogenetic constraints. Bull. Int. Geol. Assoc., 25, 1–10.Google Scholar
Sen, G. (1988) Petrogenesis of spinel lherzolite and pyroxenite suite xenoliths from the Koolau shield, Oahu Hawaii: Implications for petrology of the posteruptive lithosphere beneath Oahu. Contrib. Mineral. Petrol., 100, 6191.CrossRefGoogle Scholar
Stosch, H.G., Kugmair, G.W., and Kovalenko, V.I., (1986) Spinel peridotite xenoliths from Tariat depression, Mongolia II, geochemical and Nd-and Sr-isotopic composition and their implications for the evolution of the subcontinental lithosphere. Geochim. Cosmochim. Acta, 50, 2601–14.CrossRefGoogle Scholar
Stosch, H.G., Ionov, D.A., Puchtel, I.S., Galer, S.J.G., and Sharpouri, A. (1995) Lower crustal xenoliths from Mongolia and their bearing on the nature of the deep crust beneath central Asia. Lithos, 36, 227–42.CrossRefGoogle Scholar
Subbarao, K.V., and Hooper, P.R. (1988) Reconnaissance map of the Deccan Basalt Group in the Western Ghats, India. In Deccan Flood Basalts (Subbarao, K.V., ed.), Mem. Geol. Soc. Ind., 10, (enclosure).Google Scholar
Sun, S.S., (1980) Lead isotopic study of young volcanic rocks from mid-oceanic ridges, oceanic islands and island-arcs. Phil. Trans. R. Soc. Lond., A297, 409–45.Google Scholar
Sun, S.S., and McDonough, W.F., (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In Magmatism in ocean basins (Saunders, A.D. and Norry, M.J., eds), Geol. Soc. Lond. Spec. Publ., 42, 313–45.Google Scholar
Szabo, C.S., and Taylor, L.A., (1994) Mantle petrology and geochemistry beneath the Nograd-Gomer volcanic field, Carpathian-Pannonian region. Inter. Geol. Rev., 36, 328–58.CrossRefGoogle Scholar
Taylor, S.R., and McLennan, S.M., (1985) The continental crust: its composition and evolution. Blackwell, Oxford, 312 p.Google Scholar
Vaselli, O., Downes, H., Thirlwall, M., Dobosi, G., Coradossi, N., Seghedi, I., Szakacs, A. and Vannucci, R. (1995) Ultramafic xenoliths in Plio-Pleistocene alkali basalts from the eastern Transylvanian basin: depleted mantle enriched by vein metasomatism. J. Petrol., 36, 23–53.CrossRefGoogle Scholar
Venkatesan, T.R., Pande, K. and Gopalan, K. (1986) 40Ar–39Ar dating of Deccan basalts. J. Geol. Soc. Ind., 27, 102–09.Google Scholar
Watts, A.B., and Cox, K.G., (1989) The Deccan Trap: an interpretation in terms of progressive lithospheric flexure in response to a migrating load. Earth Planet. Sci. Lett., 93, 8597.CrossRefGoogle Scholar
Wells, P.R.A., (1977) Pyroxene thermometry in simple and complex systems. Contrib. Mineral. Petrol., 62, 129–39.CrossRefGoogle Scholar
Wilson, M. (1989) Igneous Petrogenesis: A Global Tectonic Approach. Unwin Hyman, London 446 p.CrossRefGoogle Scholar
Wilshire, H.G., and Shervais, J.W., (1975) Al-augite and Cr-diopside ultramafic xenoliths in basaltic rocks from Western United States. In Physics and Chemistry of the Earth, (Aherns, L.H., Dawson, J.B., Duncan, A.R. and Erlank, A.J., eds) Pergamon Press, New York, 9, 257–72.CrossRefGoogle Scholar
Witt-Eickschen, G., Seck, H.A., and Reys, C.H., (1993) Multiple enrichment processes and their relationship in the subcrustal lithosphere beneath the Eifel (Germany). J. Petrol., 34, 122.CrossRefGoogle Scholar
Wood, B.J., and Banno, S. (1973) Garnet-orthopyroxene and orthopyroxene-clinopyroxene relationships in simple and complex systems. Contrib. Mineral. Petrol., 42, 109–12.CrossRefGoogle Scholar