Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-13T03:10:15.887Z Has data issue: false hasContentIssue false

Petrology and geodynamic significance of deerite-bearing metaquartzites from the Escambray Massif, Cuba

Published online by Cambridge University Press:  05 July 2018

C. Grevel
Affiliation:
Institut für Geologie, Mineralogie und Geophysik, Ruhr-Universität Bochum, D-44780 Bochum, Germany
W. V. Maresch*
Affiliation:
Institut für Geologie, Mineralogie und Geophysik, Ruhr-Universität Bochum, D-44780 Bochum, Germany
K.-P. Stanek
Affiliation:
Institut für Geologie, TU Bergakademie Freiberg, Bernhard-von-Cotta-Str. 2, D-09596 Freiberg, Germany
F. Grafe
Affiliation:
Institut für Geologie, Mineralogie und Geophysik, Ruhr-Universität Bochum, D-44780 Bochum, Germany
S. Hoernes
Affiliation:
Mineralogisch-Petrographisches Institut und Museum, Poppelsdorfer Schloss, D-53115 Bonn, Germany

Abstract

Deerite, a typical mineral of Fe-rich metacherts metamorphosed under blueschist conditions, is not rare, but known occurrences have up to now been restricted mainly to the Tethyan collisional zone and the Western Cordillera of North America. We describe a first occurrence in the high-pressure nappes of the Escambray Massif, Cuba, in the assemblage deerite + Mg-Al-poor riebeckite + magnetite + quartz ± garnet ± phengite ± aegirine. This assemblage typically forms during exhumation and accompanies late, stress-free annealing of the quartz matrix. Mg-Al-poor riebeckite overgrows older, large, oriented crystals of glaucophane, ferroglaucophane and Mg-Al-rich riebeckite (‘crossite’) during deerite formation. Early-formed hematite was largely replaced by magnetite. Deerite is very close to ideal composition, attaining >99% Si12O40(OH)5, allowing direct application of the experimentally determined P-T-fO2 stability field (Lattard and Le Breton, 1994). In combination with oxygen-isotope thermometry on magnetite-quartz, the crystallization conditions of the deerite-bearing assemblage can be constrained to ∼470°C, >15 kbar, and an oxygen fugacity restricted closely to the quartz-fayalite-magnetite buffer (fO2 ≈ 10−23 bar). Thus, the late-stage P-T path ofthe metacherts mirrors a steep P-T gradient of 10°C/km or less, requiring subduction ofthis part ofthe Antillean Island Arc to be still active during exhumation of the Escambray nappes.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

present address: TÜV Rheinland, Am Grauen Stein, D-51105 Cologne, Germany

present address: IBeWa Consulting, Lessingstraße 46, D-09599 Freiberg, Germany

References

Agrell, S. O., Brown, M. G. and McKie, D. (1965) Deerite, howieite and zussmanite, three new minerals from the Franciscan of the Laytonville district, Mendocino Co., California. American Mineralogist, 50, 278 Google Scholar
Asprey, L. B. (1976) The preparation of very pure fluorine gas. Journal of Fluorine Chemistry, 7, 359361.CrossRefGoogle Scholar
Bailey, S. W. (1980) Summary of recommendations of AIPEA nomenclature committee on clay minerals. American Mineralogist, 65, 17.Google Scholar
Chacko, T., Cole, D. R. and Horita, J. (2001) Equilibrium oxygen, hydrogen and carbon isotope fractionation factors applicable to geologic systems. Pp. 161 in: Stable Isotope Geochemistry. (Valley, J. W. and Cole, D. R., editors). Reviews in Mineralogy & Geochemistry, 43, Mineralogical Society of America and The Geochemical Society, Washington, D.C. Google Scholar
Chiba, H., Chacko, T., Clayton, R. N. and Goldsmith, J. R. (1989) Oxygen isotope fractionations involving diopside, forsterite, magnetite and calcite: application to geothermometry. Geochimica et Cosmochimica Acta, 53, 29852995.CrossRefGoogle Scholar
Clayton, R. N. and Mayeda, T. K. (1963) The use of bromine pentafluoride in the exctraction of oxygen from oxides and silicates for isotope analysis. Geochimica et Cosmochimica Acta, 27, 4352.CrossRefGoogle Scholar
Clayton, R. N., Goldsmith, J. R. and Mayeda, T. K. (1989) Oxygen isotope fractionation in quartz, albite, anorthite and calcite. Geochimica et Cosmochimica Acta, 53, 725733.CrossRefGoogle Scholar
Coleman, R. G. and Lee, D. E. (1963) Glaucophane-bearing metamorphic rock types of the Cazadero area, California. Journal of Petrology, 4, 260301.CrossRefGoogle Scholar
Deer, W. A., Howie, R. A. and Zussman, J. (1997) Rock-forming Minerals. Volume 2B (Second Edition), Double-Chain Silicates. The Geological Society, London, 764 pp.Google Scholar
Dudek, K. and Kenast, J. R. (1987) Deerite from lie de Groix, Brittany, France. Mineralogical Magazine, 53, 603612.CrossRefGoogle Scholar
Evans, B. W. and Owen, C. (2002) Phase relations of riebeckite-arfvedsonite solid solutions. Geological Society of America Abstracts with Program, Paper 220-5.Google Scholar
Fiorentini, E., Hoernes, S., Hoffbauer, R. and Vitanage, P. W. (1990) Nature and scale of fluid-rock exchange in granulite grade rocks of Sri Lanka: a stable isotope study. Pp. 311338 in: Granulites and Crustal Evolution. (Vielzeuf, D. and Vidal, P., editors). NATO ASI-Series, C, 311CrossRefGoogle Scholar
Fleet, M. E. (1977) The crystal structure of deerite. American Mineralogist, 62, 990998.Google Scholar
Giunta, G., Beccaluva, L., Coltorti, M. and Siena, F. (2002) Tectono-magmatic significance of the peri-Caribbean ophiolitic units and geodynamic implications. Pp. 1534 in: Caribbean Geology into the Third Millennium: Transactions of the fifteenth Caribbean Geological Conferenc. (Jackson, T. A., editor). University of the West Indies Press, Mona, Jamaica.Google Scholar
Grafe, F. (2001) Geochronologie metamorpher Komplexe am Beispiel der kretazischen Inselbogen-Kontinent-Kollisionszone Zentralkubas. Unpublished Dr. rer. nat. Thesis, Ruhr-Universität Bochum, Germany.Google Scholar
Grevel, C. (2000) Druck- und Temperaturentwicklung der metamorphen Deckeneinheiten des Escambray Massives, Kuba. Unpublished Dr. rer. nat. Thesis, Ruhr-Universität Bochum, Germany.Google Scholar
Hatten, C. W., Somin, M., Millán, G., Renne, P., Kistler, R. W. and Mattinson, J. M. (1988) Tectonostratigraphic units of Central Cuba. Transactions of the 11th Caribbean Geological Conference, Barbados, 35:1-35:13.Google Scholar
Hollister, L. S. (1966) Garnet zoning: an interpretation based on the Rayleigh fractionation model. Science. 154, 16471651.CrossRefGoogle Scholar
Iturralde-Vinent, M. A. (1994) Cuban geology: A new plate-tectonic synthesis. Journal of Petrology and Geology, 17, 1, 3970.CrossRefGoogle Scholar
Johannes, W. and Schreyer, W. (1981) Experimental introduction of CO2 and H2O into Mg-cordierite. American Journal of Science. 281, 299317.CrossRefGoogle Scholar
Kerr, A. C., Iturralde-Vinent, M. A., Saunders, A. D., Babbs, T. L. and Tarney, J. (1999) A new plate tectonic model of the Caribbean: Implications from a geochemical reconnaissance of Cuban Mesozoic volcanic rocks. Geological Society of America Bulletin. 111, 15811599.2.3.CO;2>CrossRefGoogle Scholar
Kienast, J. R. (1983) Le métamorphisme de haute pression et de basse temperature (éclogites et schistes bleus): données nouvelles sur la pétrologie des roches de la croute oceanique subductée et des sédiments associés. These d'état, Université P. et M. Curie, Paris.Google Scholar
Klein-Helmkamp, U. (1996) Metamorphose und Exhumierung der niedrigtemperierten Hochdruckmetamorphite der Styra-Ochi-Einheit in Süd-Euböa, Attisch-Kykladisches Kristallin, Griechenland. Dr. rer. nat. Thesis, Ruhr-Universität Bochum, Germany, 121 pp.Google Scholar
Lacroix, A. (1941) Les glaucophanites de la Nouvelle-Calédonie et les roches qui les accompagnent, leur composition et leur genèse. Academie Sciences de Paris, Memoires, 65, 71 Google Scholar
Langer, K., Lattard, D. and Schreyer, W. (1977) Synthesis and stability of deerite [Si12O40](OH)10, and Fe3+ = Al3+ substitution at 15–28 kbar. Contributions to Mineralogy and Petrology, 60, 271297.CrossRefGoogle Scholar
Lattard, D. and Le Breton, N. (1994) The P-T-f O2 stability of deerite, Si12O40(OH)10 . Contributions to Mineralogy and Petrology. 115, 474487.CrossRefGoogle Scholar
Leake, B. E., Woolley, A. R., Arps, C. E. P., Birch, W. D., Gilbert, M. C., Grice, J. D., Hawthorne, F. C., Kato, A., Kisch, H. J., Krivovichev, V. G., Linthout, K., Laird, J., Mandarino, J., Maresch, W. V., Nickel, E. H., Rock, N. M., Schumacher, J. C., Smith, D. C., Stephenson, N. C. N., Ungaretti, L., Whittaker, E. J. W. and Youzhi, G. (1997) Nomenclature of amphiboles: Report of the subcommittee on amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. European Journal of Mineralogy, 9, 623651.CrossRefGoogle Scholar
Leake, B. E., Woolley, A. R., Birch, W. D., Burke, E. A. J., Ferraris, G., Grice, J. D., Hawthorne, F. C., Kisch, H. J., Krivovichev, V. G., Schumacher, J. C., Stephenson, N. C. N. and Whittaker, E. J. W. (2004) Nomenclature of amphiboles: additions and revisions to the International Mineralogical Association's amphibole nomenclature. Mineralogical Magazine, 68, 209215.CrossRefGoogle Scholar
Liebau, F. (1985) Structural Chemistry of Silicates. Springer-Verlag, Berlin, 347 pp.CrossRefGoogle Scholar
Massonne, H.-J. and Schreyer, W. (1987) Phengite geobarometry based on the limiting assemblage with K-feldspar, phlogopite and quartz. Contributions to Mineralogy and Petrology, 96, 212224.CrossRefGoogle Scholar
Meschede, M. and Frisch, W. (1998) A plate-tectonic model for the Mesozoic and Cenozoic history of the Caribbean Plate. Tectonophysics. 296, 269291.CrossRefGoogle Scholar
Millán, G. and Somin, M. L. (1985 a) Condiciones geológicas de la constitution de la capa granito-metamórfica de la corteza terrestre de Cuba. Instituto de Geología y Paleontología, Academia de Ciencias de Cuba, La Habana, p. 83.Google Scholar
Millán, G. and Somin, M. L. (1985 b) Contribución al conocimiento geológico de las metamorfitas del Escambray y del Purial. Instituto de Geología y Paleontologia, Academia de Ciencias de Cuba, La Habana, 74 pp.Google Scholar
Millán-Trujillo, G. (1997) Geología del macizo metamórfico del Escambray. Pp. 271288 in: Estudios sobre Geologia de Cuba. (Furrazola Bermüdez, G. F. and Núñnez Cambra, K. E., editors). Centra Nacional de Informatión Geologica, La Habana, Cuba.Google Scholar
Miyashiro, A. (1957) The chemistry, optics and genesis of alkali amphiboles. Journal of the Faculty of Science, University of Tokyo, 11, 5783.Google Scholar
Muir Wood, R. (1979) The iron-rich blueschist facies minerals: I. Deerite. Mineralogical Magazine. 43, 251259.CrossRefGoogle Scholar
Okay, A. I. (1980) Sodic amphiboles as oxygen fugacity indicators in metamorphism. Journal of Geology, 88, 225232.CrossRefGoogle Scholar
Okay, A. I. (1987) The oxygen fugacity stability of deerite: an alternative view. Journal of Metamorphic Geology, 5, 553555.CrossRefGoogle Scholar
Owen, C. (1988) The petrogenesis of blueschist facies ironstones in the Shuksan and Easton schists, North Cascades, Washington. Unpublished PhD thesis, University of Washington, 290 pp.Google Scholar
Pindell, J. L. and Barrett, S. F. (1990) Geological evolution of the Caribbean region; a plate-tectonic perspective. Pp. 405432 in: The Caribbean region: Boulder, Colorad.(Case, J. E. and Dengo, G., editors). Geological Society of America, Boulder, Colorado; Bd. vol. H. The Geology of North America.Google Scholar
Pindell, J., Kennan, L., Maresch, W. V., Stanek, K.-P., Draper, G. and Higgs, R. (2005) Plate-kinematics and crustal dynamics of circum-Caribbean arc-continent interactions: tectonic controls on basin development in Proto-Caribbean margins. Pp. 752 in: Caribbean/South American Plate Interactions, Venezuel. (Avé, H. G. Lallemant and Sisson, V. B., editors). Geological Society of America Special Paper, 394.Google Scholar
Pouchou, J. L. and Pichoir, F. (1984) Un nouveau modèle de calcul pour la microanalyse quantitative par spectrometrie de rayons X. Recherches Aerospatiale, 3, 167192.Google Scholar
Ramdohr, P. (1980) The Ore Minerals and their Intergrowths. Pergamon Press, Oxford, UK, 1205 pp.Google Scholar
Reinecke, T. (1987) Manganoan deerite and calderitic garnet from high-pressure metamorphic Fe-Mn-rich quartzites on Andros Island, Greece. Mineralogical Magazine, 51, 247251.CrossRefGoogle Scholar
Schliestedt, M. (1980) Phasengleichgewichte in Hochdruckgesteinen von Sifnos, Griechenland. Unpublished Dr. rer. nat. Thesis, University of Braunschweig, Germany, 143 pp.Google Scholar
Schneider, J., Bosch, D., Moníe, P., Guillot, A., García-Casco, A., Lardeaux, J. M., Luís Torres-Roldán, R. and Millán Trujillo, G. (2004) Origin and evolution of the Escambray Massif (Central Cuba): an example of HP/LT rocks exhumed during intraoceanic subduction. Journal of Metamorphic Geology, 22, 227247.CrossRefGoogle Scholar
Somin, M. L. and Millán, G. (1974) Geologija metamorficheskich kompleksov Kuby. Isdat. Nauka, Moscow, 219 pp.Google Scholar
Somin, M. L. and Millán, G. (1981) Nekotorye tschorty struktury mezozoiskich metamorfitscheskich tol'sch Kuby. Geotektonika, 5, 1930.Google Scholar
Stanek, K. P. (2000) Geotektonische Entwicklung der nordwestlichen Karibik Abriβ der Geologie von Kuba. Freiberger Forschungsheft C476, Freiberg, Germany 169 pp.Google Scholar
Stanek, K. P., Cobiella, J., Maresch, W. V., Millán, G., Grafe, F. and Grevel, C. (2000) Geological development of Cuba. Pp. 259266 in: Geoscientific Cooperation with Latin America. (Miller, H. and Hervé, F., editors). Zeitschrift für angewandte Geologie.Google Scholar
Stanek, K.-P., Maresch, W. V., Grafe, F., Grevel, C. and Millán, G. (2002) Tectonics, petrology and geochronology of the Escambray complex, Central Cuba. Caribbean Geological Conference, Barbados, Abstract 18.Google Scholar
Stanek, K.-P., Maresch, W. V., Grafe, F., Grevel, C. and Baumann, A. (2006) Structure, tectonics and metamorphic development of the Sancti Spiritus Dome, eastern Escambray, Central Cuba. Geologica Ada, 4, 151170.Google Scholar
Stanik, E., Mañour, J. and Ching, R. (editors) (1981) Levantamiento Escambray I. Informe de los levanta-mientos geolbgicos, geoquimicos y trabajos geofisicos, realizados en la parte sur de Cuba central en las provincias Cienfuegos, Santi Spiritus y Villa Clara. Oficina Nacional de Minerales, Centra del Fondo Geologico Nacional, La Habana (unpublished).Google Scholar
Ungethüm, H. (1965) Eine neue Methode zur Bestimmung von Eisen(II) in Gesteinen und Mineralen, insbesondere auch in bitumenhaltigen Proben. Zeitschrift für angewandte Geologie, 11, 500505.Google Scholar
Valley, J. W. (2001) Stable isotope thermometry at high temperatures. Pp. 365413 in: Stable Isotope Geochemistr. (Valley, J. W. and Cole, D. R., editors). Reviews in Mineralogy & Geochemistry, 43. Mineralogical Society of America and The Geochemical Society, Washington, D.C. CrossRefGoogle Scholar
Vernié, P., Kienast, J. R. and Mélvel, C. (1986) The occurrence of deerite in highly oxidizing conditions within the ‘schistes lustrés’ of eastern Corsica. Journal of Metamorphic Geology, 4, 385399.CrossRefGoogle Scholar
Worthing, M. A. (1987) Deerite from Papua, New Guinea. Mineralogical Magazine, 51, 689694.CrossRefGoogle Scholar
Yardley, B. W. D., Rochelle, C. A., Barnicoat, A. C. and Lloyd, G. E. (1991) Oscillatory zoning in metamorphic minerals: an indicator of infiltration metasomatism. Mineralogical Magazine, 55, 357365.CrossRefGoogle Scholar