Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-03T22:56:31.975Z Has data issue: false hasContentIssue false

Phase Equilibria in the System MgO-Al2O3-SiO2-H2O: Chlorites and Associated Minerals

Published online by Cambridge University Press:  05 July 2018

Bruce Velde*
Affiliation:
Laboratoire de Pétrographie, Université de Paris VI, 9, quai Saint Bernard, 75005 Paris

Summary

Twenty-six compositions in the system MgO-Al2O3-SiO2-H2O were investigated under conditions of 1 and 2 Kb water pressure and temperatures between 300 and 700°C. The solid solution for 7 Å and 14 Å chlorites has been delimited as well as that of the expanding phases (tri- and dioctahedral montmorillonites and expanding chlorites). Negative slopes were found for the transformation montmorillonite → expanding chlorite, and expanding chlorite → chlorite+quartz and a positive slope for 7Å → 4 Å transformation. The relative positions of the reactions chlorite+quartz → cordierite+talc, chlorite+andalusite → cordierite and chlorite+corundum → cordierite+spinel are located between 500 and 65°C.

Cell dimensions of the synthetic chlorites can be correlated with their chemical composition. Solid solution in synthetic minerals compares well with 325 analysis of natural minerals from the literature, indicating that the chemiographic relations between phases in the simplified synthetic system are applicable to natural mineral assemblages. The phase relations indicate that at low temperature the 7Å aluminous chlorite is not stable with quartz or another silica phase.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1973

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brown, (B. E.) and Bailey, (S. W.), 1962. Amer. Min., 47, 819.Google Scholar
Brown, (G.) ed., 1961. The X-ray Identification and Crystal Structures of Clay Minerals, Mineralogical Society, London.Google Scholar
Esquevin, (J.), 1960. Ann. Agronomique, 11, 497.Google Scholar
Esteoule, (J.), 1969. Thesis, Fac. Sci. Univ. Rennes.Google Scholar
Fawcett, (J. J.) and Yoder, (H. S.), 1966. Amer. Min., 51, 353.Google Scholar
Foster, (M. D.), 1962. U.S. Geol. Surv. Prof. Paper, 414-A.Google Scholar
Gillery, (F. H.), 1959. Amer. Min., 44, 143.Google Scholar
Hayes, (J. B.), 1970. Clays Clay Min., 18, 285.CrossRefGoogle Scholar
Iiyama, (J. T.) and Roy, (R.), 1963. Ibid. 10, 4.Google Scholar
Johannes, (W.), 1969. Amer. Journ. Sci. 161, 1083.Google Scholar
Krauskopf, (K. B.), 1959. Soc. Econ. Pal. Min. Spec. Pub., 7, 4.Google Scholar
Nelson, (B. W.) and Roy, (R.), 1958. Amer. Min., 43, 707.Google Scholar
Porrenga, (D. H.), 1967. Marine Geol., 5, 495.CrossRefGoogle Scholar
Rohrlich, (V.), Price, (N. B.), and Calvert, (S. E.), 1969. Journ. Sed. Petr., 39, 624.Google Scholar
Roy, (D. M.) and Roy, (R.), 1954. Amer. Min., 39, 147.Google Scholar
Schreyer, (W.) and Seifert, (F.), 1969. Amer. Journ. Sci., 267, 371.CrossRefGoogle Scholar
Seifert, (F.), 1970. Journ. Petrology, 11, 73.CrossRefGoogle Scholar
Seifert, (F.) 1971. Fortschr. Min., 49, 52.Google Scholar
Seift.rt, (F.) and Schreyer, (W.), 1970. Contr. Min. Petr., 27, 225.CrossRefGoogle Scholar
Steadman, (R.) and Nuttall, (P. M.), 1962. Acta Cryst., 15, 510.CrossRefGoogle Scholar
Stfinfink, (H.) and Brunton, (G.), 1956. Ibid. 9, 487.CrossRefGoogle Scholar
Velde, (B.), 1969. Bull. Soc.frattf. Min. Crist., 92, 360.Google Scholar
Velde, (B.) and Kornprobst, (J.), 1969. Contr. min. Petr., 21, 63.CrossRefGoogle Scholar
Yoder, (H. S.), 1952. Amer. Jottrn. Sci. Bowen Vol. 569.Google Scholar