Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-28T07:45:28.479Z Has data issue: false hasContentIssue false

The phase system Fe-Ir-S at 1100, 1000 and 800°C

Published online by Cambridge University Press:  05 July 2018

E. Makovicky
Affiliation:
Department of Mineralogy, The Geological Central Institute, University of Copenhagen, Østervoldgade 10, DK 1350 Copenhagen K, Denmark
S. Karup-Møller
Affiliation:
Department of Geology and Geotechnical Engineering, The Technical University of Denmark, DK 2800 Lyngby, Denmark

Abstract

Phase relations in the dry condensed Fe-Ir-S system were determined at 1100, 1000 and 800°C. Orientational runs were performed at 500°C. Between 1100 and 800°C, the system comprises five sulphides and an uninterrupted field of γ(Fe,Ir). Fe1-xS dissolves 5.8 at.% Ir at 1100°C, 3.4 at.% Ir at 1000°C and 1.0 at.% Ir at 800°C. The solubility of Fe in Ir2S3, IrS2 and IrS~3 increases with decreasing temperature, reaching 2.5 at.% in the latter two sulphides at 800°C. Thiospinel ‘FeIr2S4— is non-stoichiometric, from Fe22.3Ir19.8S58.0 to Fe18.9Ir23.1S58.0, depending on aS and aFe, i.e. on a phase association. Thiospinel is absent at 800 and 500°C.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Augé, T. and Legendre, O. (1992) Pt-Fe nuggets from alluvial deposits in Eastern Madagascar. Canad. Mineral., 30, 9831004.Google Scholar
Begizov, V.D., Zavyalov, E.N., Rudashevskyi, N.S. and Vyalsov, L.N. (1985) Kashinite (Ir, Rh)2S3 — a new iridium and rhodium sulphide. Zap. Vses. Mineral. Obshch., 114, 617–22.Google Scholar
Biltz, W., Laar, J., Ehrlich, P. and Meisel, K. (1937) Über die Sulfide des Iridiums. Z. anorg. Chem., 233, 257–81.CrossRefGoogle Scholar
Cabri, L.J., Harris, D.C. and Weiser, T.W. (1996) Mineralogy and distribution of platinum-group mineral (PGM) placer deposits of the world. Expl. Mining Geol., 5, 73167.Google Scholar
Dmitrenko, G.G. (1994) Platinum Group Minerals of Alpine-type Ultramafics. Far-Eastern Branch of the Russian Academy of Sciences, Northeastern Interdisciplinary Research Institute, Magadan, 134 pp. (in Russian).Google Scholar
Fishman, B.A., Pavlyuchenko, N.M., Blagoveshchenskaya, N.V., Bryukvin, V.A., Blokhina, A.V. and Byalyi, A.V. (1992) A study of eutectic equilibrium in the Os-S and Ir-S systems. Izv. Akad. Nauk SSSR, Metally, No 4, 51–4.(in Russian).Google Scholar
Hulliger, F. (1964) Crystal structure and electrical properties of some cobalt-group chalcogenides. Nature, 204, 644–46.CrossRefGoogle Scholar
Hulliger, F. (1968): Crystal chemistry of the chalogenides and pnictides of the transition elements. Structure and Bonding, 4, 83229.CrossRefGoogle Scholar
Jobic, S., Deniard, P., Brec, R., Rouxel, J., Drew, M.G.B. and David, W.I.F. (1990) Properties of the transition metal dichalcogenides: The case of IrS2 and IrSe2 . J. Solid State Chem., 89, 315–27.CrossRefGoogle Scholar
Johan, Z. (1995) Minéralogie des platinoïdes: implications génétiques. Colloque Minéralogie Fondamentale et Appliqueé à la memoire de Claude Guillemin. Résumés des Communications. Documents du B.R.G.M. 243, 3741.Google Scholar
Johan, Z., Ohnenstetter, M., Slansky, E., Barron, L.M. and Suppel, D. (1989) Platinum mineralization in the Alaskan-type intrusive complexes near Fifield, New South Wales, Australia. Part 1. Platinum-group minerals in clinopyroxenites of the Kelvin Grove prospect, Owendale intrusion. Mineral. Petrol., 40, 289309.CrossRefGoogle Scholar
Johan, Z., Ohnenstetter, M., Fischer, W. and Amossé, J. (1990) Platinum-group minerals from the Durance river alluvium, France. Mineral. Petrol., 42, 287306.CrossRefGoogle Scholar
Kubaschewski, O. (1982) Iron-Binary Phase Diagrams. Springer, New York, Berlin, 185 pp.Google Scholar
Makovicky, E. and Karup-Møller, S. (1993) The system Pd-Fe-S at 900°, 725°, 550° and 400°C. Econ. Geol., 88, 1269–78.CrossRefGoogle Scholar
Raub, E., Loebich, O. and Beeskow, H. (1964) Die Struktur der festen Eisen-Iridium-Legierungen. Z. Metallkunde, 55, 367–70.Google Scholar
Rudashevskii, N.S., Mochalov, A.G., Begizov, V.D., Menchikov, Yu.P. and Shumskaya, N.I. (1984) Inaglyite, PbCu3(Ir,Pt)8S16, a new mineral (in Russ.) Zap. Vses. Mineral. Obshch., 113, 712–7.Google Scholar
Rudashevskii, N.S., Menachikov, Yu.N., Mochalov, A.G., Trubkin, N.V., Shumskaya, N.I. and Zhdanov, V.V. (1985) Cuprorhodsite CuRh2S4 and cuproiridsite CuIr2S4, new natural thiospinels of platinum-group elements. Zap. Vses. Mineral. Obshch., 114, 187–95.Google Scholar
Slansky, E., Johan, Z., Ohnenstetter, M., Barron, L.M. and Suppel, D. (1991) Platinum mineralization in the Alaskan-type intrusive complexes near Fifield, N.S.W., Australia. Part 2. Platinum-group minerals in placer deposits at Fifield. Mineral. Petrol., 43, 161–80.CrossRefGoogle Scholar
Swatzendruber, H. (1984) The Fe-Ir (iron-iridium) system. Bull. Alloy Phase Diagrams, 5(1), 4852.CrossRefGoogle Scholar
Toma, S.A. and Murphy, S. (1977) The composition and properties of some native platinum concentrates from different localities. Canad. Mineral., 15, 5969.Google Scholar
Wöhler, L., Ewald, K. and Krall, H.G. (1933) Die Sulfide, Selenide und Telluride der sechs Platinmetalle. Ber. deutsch. chem. Gesellschaft, 66, 1638–52.CrossRefGoogle Scholar
Yu, T.H., Lin, S.J., Chao, P., Fang, C.S. and Huang, C.S. (1974) A preliminary study of some new minerals of the platinum group and another associated new one in platinum-bearing intrusions in a region in China. Acta Geol. Sin., 2, 202–18.(in Chinese).Google Scholar