Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T12:06:50.625Z Has data issue: false hasContentIssue false

Phase transitions in tridymite studied using ‘Rigid Unit Mode’ theory, Reverse Monte Carlo methods and molecular dynamics simulations

Published online by Cambridge University Press:  05 July 2018

M. T. Dove*
Affiliation:
Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK
A. K. A. Pryde
Affiliation:
Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK
D. A. Keen
Affiliation:
ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX, UK

Abstract

The phase transitions in tridymite and the nature of the high-temperature phase are investigated using a combination of Rigid Unit Mode theory, neutron total scattering measurements analysed using the Reverse Monte Carlo method, and molecular dynamics simulations. The unusually large number of phase transitions in tridymite can be explained within the Rigid Unit Mode theory. The Rigid Unit Mode theory also gives an interpretation of the disordered high-temperature phase as revealed by the neutron scattering data and the molecular dynamics simulations. There is a close correspondence between the structure of the disordered high-temperature phase of tridymite and that of β-cristobalite.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boysen, H., Dorner, B., Frey, F. and Grimm, H. (1980) Dynamic structure determination for two interacting modes at the M-point in α- and β-quartz by inelastic neutron scattering. J. Physics C: Solid State Physics, 13, 6127–46.CrossRefGoogle Scholar
Cellai, D., Carpenter, M.A., Wruck, B. and Salje, E.K.H. (1994) Characterization of high-temperature phase transitions in single crystals of Steinbach tridymite. Amer. Mineral., 79, 606614.Google Scholar
de Dombal, R.F. and Carpenter, M.A. (1993) High-temperature phase transitions in Steinbach tridymite. Eur. J. Mineral., 5, 607622.CrossRefGoogle Scholar
Dempsey, M.J. and Kawamura, K. (1984) Molecular dynamics simulation of the structure of aluminosilicate melts. Pp. 4956 in: Progress in Experimental Petrology (Henderson, C.M.B., editor). Natural Environment Research Council, Manchester.Google Scholar
Dove, M.T. (1997) Silicates and soft modes. Pp. 349–83 in: Amorphous Insulators and Semiconductors (Thorpe, M.F. and Mitkova, M.I., editors). NATO ASI series 3. High Technology, 23. Kluwer, Amsterdam.CrossRefGoogle Scholar
Dove, M.T., Giddy, A.P. and Heine, V. (1993) Rigid unit mode model of displacive phase transitions in framework silicates. Trans. Am. Crystallogr. Assoc.,27, 6574.Google Scholar
Dove, M.T., Heine, V. and Hammonds, K.D. (1995 a) Rigid unit modes in framework silicates. Mineral. Mag., 59, 629–39.CrossRefGoogle Scholar
Dove, M.T., Hammonds, K.D., Heine, V., Withers, R.L., Xiao, Y. and Kirkpatrick, R.J. (1995 b) Rigid unit modes in the high-temperature phase of SiO2 tridymite: Calculations and electron diffraction. Phys. Chem. Min., 23, 5662.Google Scholar
Dove, M.T., Keen, D.A., Hannon, A.C. and Swainson, I.P. (1997) Direct measurement of the Si–O bond length and orientational disorder in β-cristobalite. Phys. Chem. Min., 24, 311–17.CrossRefGoogle Scholar
Dove, M.T., Hammonds, K.D. and Trachenko, K. (1999) Floppy modes in crystalline and amorphous silicates. Pp. 217–38 in: Rigidity Theory and Applications (Thorpe, M.F. and Duxbury, P.M., editors). Plenum, New York.Google Scholar
Dove, M.T., Heine, V., Hammonds, K.D., Gambhir, M. and Pryde, A.K.A. (1998) Short-range disorder and long-range order: implications of the ‘Rigid Unit Mode’ model. Pp. 253–72 in: Local Structure from Diffraction (Thorpe, M.F. and Billinge, S., editors). Plenum, New York.Google Scholar
Gale, J.D. (1997) GULP: A computer program for the symmetry-adapted simulation of solids. J. Chem. Soc.: Faraday Trans., 93, 629–37.Google Scholar
Gambhir, M., Dove, M.T. and Heine, V. (1999) Rigid Unit Modes and dynamic disorder: SiO2 cristobalite and quartz. Phys. Chem. Min., 26, 484–95.CrossRefGoogle Scholar
Giddy, A.P., Dove, M.T., Pawley, G.S. and Heine, V. (1993) The determination of rigid unit modes as potential soft modes for displacive phase transitions in framework crystal structures. Acta Crystallogr., A49, 697703.CrossRefGoogle Scholar
Hammonds, K.D., Dove, M.T., Giddy, A.P. and Heine, V. (1994) CRUSH: A FORTRAN program for the analysis of the rigid unit mode spectrum of a framework structure. Amer. Mineral., 79, 1207–9.Google Scholar
Hammonds, K.D., Dove, M.T., Giddy, A.P., Heine, V. and Winkler, B. (1996) Rigid unit phonon modes and structural phase transitions in framework silicates. Amer. Mineral., 81, 1057–79.CrossRefGoogle Scholar
Howells, W.S. and Hannon, A.C. (1999) LAD, 1982–1998: the first ISIS diffractometer. J. Physics: Condensed Matter, 11, 9127–38.Google Scholar
Keen, D.A. (1997) Refining disordered structural models using reverse Monte Carlo methods: Application to vitreous silica. Phase Transitions, 61, 109–24.CrossRefGoogle Scholar
Keen, D.A. (1998) Reverse Monte Carlo refinement of disordered silica phases. Pp. 109–19 in: Local Structure from Diffraction (Billinge, S.J.L. and Thorpe, M.F., editors). Plenum, New York.Google Scholar
Keen, D.A. and Dove, M.T. (1999) Local structures of amorphous and crystalline phases of silica, SiO2, by neutron total scattering. J. Physics: Condensed Matter, 11, 9263–73.Google Scholar
Kramer, G.J., Farragher, N.P., van Beest, B.W.H. and van Santen, R.A. (1991) Interatomic force fields for silicates, aluminophosphates and zeolites: Derivation based on ab initio calculations. Phys. Rev., B43, 5068–79.CrossRefGoogle Scholar
Lasaga, A.C. and Gibbs, G.V. (1987) Applications of quantum mechanical potential surfaces to mineral physics calculations. Phys. Chem. Min., 14, 107–17.CrossRefGoogle Scholar
Pryde, A.K.A. and Dove, M.T. (1998) On the sequence of phase transitions in tridymite. Phys. Chem. Min., 26, 171–9.CrossRefGoogle Scholar
Sanders, M.J., Leslie, M. and Catlow, C.R.A. (1984) Interatomic potentials for SiO2. J. Chem. Soc.: Chem. Comm., 1271–3.CrossRefGoogle Scholar
Scamehorn, C.A. and Angell, C.A. (1991) Viscosity-temperature relations and structure in fully polymerized aluminosilicate melts from ion dynamics simulations. Geochem. Cosmochim. Acta, 55, 721–30.CrossRefGoogle Scholar
Schmahl, W.W., Swainson, I.P., Dove, M.T. and Graeme-Barber, A. (1992) Landau free energy and order parameter behaviour of the α–β phase transition in cristobalite. Zeits. Kristallogr., 201, 20112–45.Google Scholar
Smith, W. and Forester, T.R. (1996) DL_POLY_2.0 – A general purpose parallel molecular dynamics simulation package. J. Molecular Graphics, 14, 136–41.CrossRefGoogle ScholarPubMed
Strauch, D. and Dorner, B. (1993) Lattice dynamics of α-quartz. 1. Experiment. J. Physics: Cond. Matt., 5, 6149–54.Google Scholar
Swainson, I.P. and Dove, M.T. (1993) Low-frequency floppy modes in β-cristobalite. Phys. Rev. Lett., 71, 193–6.CrossRefGoogle ScholarPubMed
Swainson, I.P. and Dove, M.T. (1995) Molecular dynamics simulation of α-cristobalite and β-cristobalite. J. Physics: Cond. Matt., 7, 1771–88.Google Scholar
Tsuneyuki, S., Tsukada, M., Aoki, H. and Matsui, Y. (1988) First principles interatomic potential of silica applied to molecular dynamics. Phys. Rev. Lett., 61, 869–72.CrossRefGoogle ScholarPubMed
Tsuneyuki, S., Tsukada, M., Aoki, H. and Matsui, Y. (1989) New pressure-induced structural transformations in silica obtained by computer simulation. Nature, 339, 209–11.CrossRefGoogle Scholar
Tsuneyuki, S., Aoki, H., Tsukada, M. and Matsui, Y. (1990) Molecular dynamics study of the α to β structural phase transition of quartz. Phys. Rev. Lett., 64, 776–9.CrossRefGoogle ScholarPubMed
Vallade, M., Berge, B. and Dolino, G. (1992) Origin of the incommensurate phase of quartz: II . Interpretation of inelastic neutron scattering data. J. de Physique I, 2, 1481–95.Google Scholar
Withers, R.L., Thompson, J.G., Xiao, Y. and Kirkpatrick, R.J. (1994) An electron diffraction study of the polymorphs of SiO2-tridymite. Phys. Chem. Min., 21, 421–33.CrossRefGoogle Scholar