Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-28T15:49:49.009Z Has data issue: false hasContentIssue false

Pilawite-(Y), Ca2(Y,Yb)2[Al4(SiO4)4O2(OH)2], a new mineral from the Piława Górna granitic pegmatite, southwestern Poland: mineralogical data, crystal structure and association

Published online by Cambridge University Press:  02 January 2018

Adam Pieczka*
Affiliation:
AGH University of Science and Technology, Department of Mineralogy, Petrography and Geochemistry 30–059 Kraków, Mickiewicza 30, Poland
Frank C. Hawthorne
Affiliation:
Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
Mark A. Cooper
Affiliation:
Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
Eligiusz Szełęg
Affiliation:
University of Silesia, Faculty of Earth Sciences, Department of Geochemistry, Mineralogy and Petrography, 41–200 Sosnowiec, Będzińska 60, Poland
Adam Szuszkiewicz
Affiliation:
University of Wrocław, Institute of Geological Sciences, 50–204 Wrocław, pl. M. Borna 9, Poland
Krzysztof Turniak
Affiliation:
University of Wrocław, Institute of Geological Sciences, 50–204 Wrocław, pl. M. Borna 9, Poland
Krzysztof Nejbert
Affiliation:
University of Warsaw, Faculty of Geology, Institute of Geochemistry, Mineralogy and Petrology, 02–089 Warszawa, Żwirki and Wigury 93, Poland
Sławomir Ilnicki
Affiliation:
University of Warsaw, Faculty of Geology, Institute of Geochemistry, Mineralogy and Petrology, 02–089 Warszawa, Żwirki and Wigury 93, Poland
*

Abstract

Pilawite-(Y), ideally Ca2(Y,Yb)2Al4(SiO4)4O2(OH)2, was discovered in a pegmatite near Piława Górna, Lower Silesia, Poland. The mineral occurs as white, translucent, brittle crystals up to 1.5 mm in size. It has a white streak, vitreous lustre and a hardness of 5 on Mohs scale. The calculated density is 4.007 g/cm3. Pilawite-(Y) is non-pleochroic, biaxial (+), with refractive indices α = 1.743(5), β = 1.754(5) and γ = 1.779(5), birefringence Δ = 0.03–0.04, 2Vmeas. = 65(2)° and 2Vcalc. = 68°. Pilawite-(Y) is monoclinic P21/c, with unit-cell parameters a = 8.558(3) Å, b = 7.260(3) Å, c = 11.182(6) Å, β = 90.61(4)o, V = 694.7(4) Å3. The crystal structure was refined to an R1 index of 2.76% and consists of chains of edge- and corner-sharing octahedra decorated by tetrahedra and having the stoichiometry [Al2(SiO4)4O(OH)] that link by sharing corners to form an octahedron–tetrahedron framework with large interstices that contain Ca2+ and (Y,Ln)3+. It is a graphical isomer of the Al–P framework in palermoite, Sr2Li4[Al2(PO4)2(OH)2]2. The pilawite-(Y)-bearing assemblage began crystallization at high Y + Ln activities and was modified progressively by a Ca-enriched fluid, resulting in the sequence: keiviite-(Y) → gadolinite-(Y) to hingganite-(Y) + hellandite-(Y) → pilawite-(Y) → allanite-(Y) → epidote/zoisite.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aftalion, M. and Bowes, D.R. (2002) U-Pb zircon isotopic evidence for Mid-Devonian migmatite for¬mation in the Góry Sowie domain of the Bohemian Massif, Sudeten Mountains, SW Poland. Neues Jahrbuch für Mineralogy, Monatshefte, 4, 182192.CrossRefGoogle Scholar
Anders, E. and Grevesse, N. (1989) Abundances of the elements: Meteoritic and solar. Geochimica et Cosmochimica Acta, 53, 197214.CrossRefGoogle Scholar
Bröcker, M., Żelazniewicz, A. and Enders, M. (1998) Rb—Sr and U—Pb geochronology of migmatitic gneisses from the Góry Sowie (West Sudetes, Poland): the importance of Mid—Late Devonian metamorphism. Journal of the Geological Society, London, 155, 10251036.CrossRefGoogle Scholar
Brueckner, H.K., Blusztajn, J. and Bakun-Czubarow, N. (1996) Trace element and Sm—Nd “age” zoning in garnets from peridotites of the Caledonian and Variscan mountains and tectonic implications. Journal of Metamorphic Geology, 14, 6173.CrossRefGoogle Scholar
Černý, P. and Ercit, T.S. (2005) The classification of granitic pegmatites revisited. The Canadian Mineralogist, 43, 20052026.CrossRefGoogle Scholar
Drake, M.J. and Weill, D.F. (1972) New rare earth element standards for electron microprobe analysis. Chemical Geology, 10, 179181.CrossRefGoogle Scholar
Finney, J.J. (1963) The crystal structure of carminite. American Mineralogist, 48, 113.Google Scholar
Gordon, S.M., Schneider, D.A., Manecki, M. and Holm, D.K. (2005) Exhumation and metamorphism of an ultrahigh-grade terrane: geochronometric investiga¬tions of the Sudetes Mountains (Bohemia), Poland and Czech Republic. Journal of the Geological Society, London, 162, 841855.CrossRefGoogle Scholar
Hatert, F., Lefevre, P. and Fransolet, A.-M. (2011) The crystal structure of bertossaite, CaLi2[Al4(PO4)4(OH,F)4]. The Canadian Mineralogist, 49, 10791087.CrossRefGoogle Scholar
Hawthorne, F.C. (1985) Towards a structural classification of minerals: The VIMIVT2jn minerals. American Mineralogist, 70, 455473.Google Scholar
Hawthorne, F.C. (1986) Structural hierarchy in VIMxIIITyjz minerals. The Canadian Mineralogist, 24, 625642.Google Scholar
Hawthorne, F.C. (1990) Structural hierarchy in [6]M[4]Tjn minerals. Zeitschrift fürKristallographie, 192, 152.Google Scholar
Hawthorne, F.C., Ungaretti, L. and Oberti, R. (1995) Site populations in minerals: terminology and presentation of results of crystal-structure refinement. The Canadian Mineralogist, 33, 907911.Google Scholar
Kharisun, T.M.R., Bevan, D.J.M. and Pring, A. (1996) The crystal structure of carminite: refinement and bond valence calculations. Mineralogical Magazine, 60, 805811.Google Scholar
Kryza, R. and Fanning, C.M. (2007) Devonian deep-crustal metamorphism and exhumation in the Variscan Orogen: evidence from SHRIMP zircon ages from the HT-HP granulites and migmatites of the Góry Sowie (Polish Sudetes). Geodinamica Acta, 20, 159176.CrossRefGoogle Scholar
Libovitzky, E. (1999) Correlation of O-H stretching frequencies and O—H-0 hydrogen bond lengths in minerals. Monatshefte für Chemie, 130, 10471059.CrossRefGoogle Scholar
Mazur, S., Aleksandrowski, P., Kryza, R. and Oberc-Dziedzic, T (2006) The Variscan Orogen in Poland. Geological Quarterly, 50, 89118.Google Scholar
Moore, P.B. and Araki, T (1975) Palermoite, SrLi2Al4(PO4)4(OH)4. Its atomic arrangement and relationship to carminite, Pb2(Fe4(OH)4(AsO4)4. American Mineralogist, 60, 460465.Google Scholar
Novák, M. (2005) Granitic pegmatites of the Bohemian Massif (Czech Republic); mineralogical, geochemical and regional classification and geological significance, significanceAct. MuseiMoraviae, Scientiae geologicae, 90, 375 [in Czech with English summary].Google Scholar
Oberti, R., Della Ventura, G., Ottolini, L., Hawthorne, F. and Bonazzi, P. (2002) Re-definition, nomenclature and crystal chemistry of the hellandite group. American Mineralogist, 87, 745752.CrossRefGoogle Scholar
O'Brian, P.J., Kröner, A., Jaeckel, P., Hegner, E., Żelazniewicz, A. and Kryza, R. (1997) Petrological and isotope studies on Palaeozoic high-pressure granulites. Góry Sowie Mts, Polish Sudetes. Journal of Petrology, 38, 433^56.Google Scholar
Pieczka, A., Szuszkiewicz, A., Szełeg, E., Nejbert, K., Lodzinski, M., Ilnicki, S., Turniak, K., Banach, M., Hołub, W., Michałowski, P. and Różniak, R. (2013) (Fe,Mn)—(Ti,Sn)—(Nb,Ta) oxide assemblage in a little fractionated portion of a mixed (NYF + LCT) pegmatite from Piława Górna, the Sowie Mts. block, SW Poland. Journal of Geosciences, 58, 91112.CrossRefGoogle Scholar
Pieczka, A., Szuszkiewicz, A., Szełeg, E., Ilnicki, S., Nejbert, K. and Turniak, K. (2014) Samarskite-group minerals and alteration products: an example from the Julianna pegmatitic system, Piława Górna, SW Poland. The Canadian Mineralogist, 52, 303319.CrossRefGoogle Scholar
Pouchou, I.L. and Pichoir, F. (1985) “PAP” (phi-rho-z) procedure for improved quantitative microanalysis. Pp. 104—106 in: Microbeam Analysis (I.T Armstrong, editor). San Francisco Press, San Francisco.Google Scholar
Reed, S.J.B. and Buckley, A. (1998) Rare-earth element determination in minerals by electron-probe micro-analysis: application of spectrum synthesis. Mineralogical Magazine, 62, 18.Google Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112122.Google Scholar
Strunz, H. and Nickel, E.H. (2001) Strunz Mineralogical Tables, Ninth Edition. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart, Germany.Google Scholar
Szuszkiewicz, A., Szełeg, E., Pieczka, A., Ilnicki, S., Nejbert, K., Turniak, K., Banach, M., Łodzinski, M., Różniak, R. and Michałowski, P. (2013) The Julianna pegmatite vein system at the Piława Górna mine, Góry Sowie Block, SW Poland - preliminary data on geology and descriptive mineralogy. Geological Quarterly, 57, 467484.CrossRefGoogle Scholar
Timmermann, H., Parrish, R.R., Noble, S.R. and Kryza, R. (2000) New U—Pb monazite and zircon data from the Sudetes Mountains in SW Poland; evidence for a single-cycle Variscan Orogeny. Journal of the Geological Society, London, 157, 265268.CrossRefGoogle Scholar
Van Breemen, O., Bowes, D.R., Aftalion, M. and Żelazniewicz, A. (1988) Devonian tectonothermal activity in the Sowie Góry gneissic block, Sudetes, southwestern Poland: evidence from Rb-Sr and U-Pb isotopic studies. Journal of the Polish Geological Society, 58, 310.Google Scholar
Żelazniewicz, A. (1990) Deformation and metamorphism in the Góry Sowie gneiss complex, Sudetes, SW Poland. Neues Jahrbuch für Geologie und Paläontologie — Abhandlungen, 179, 129—157.Google Scholar
Supplementary material: File

Pieczka et al. supplementary material

CIF

Download Pieczka et al. supplementary material(File)
File 27.2 KB
Supplementary material: File

Pieczka et al. supplementary material

Structure factors

Download Pieczka et al. supplementary material(File)
File 54.9 KB