Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-05T20:48:53.906Z Has data issue: false hasContentIssue false

Pink zoisite from the Aar Massif, Switzerland

Published online by Cambridge University Press:  05 July 2018

J. Abrecht*
Affiliation:
Mineralogisch-petrographisches Institut der Universität, 3012 Bern, Switzerland

Abstract

Veins in the Central Aar granite consisting of zoisite, plagioclase, albite, alkali feldspar, muscovite, tremolite, quartz, and calcite are described. The zoisite is a thulite with up to 0.20 wt% MnO. It is argued that the zoisite is derived from granite plagioclases and has recrystallized in veins during alpine greenschist metamorphism. By later increasing XCO2 or decreasing temperature zoisite decomposed to calcite, plagioclase, and muscovite.

Thulites from different localities were investigated by X-ray and by electron microprobe analysis. Both orthorhombic and monoclinic members of the epidote group having low MnO contents have been described as thulites. It is suggested that low MnO values in the range 0.05 to 0.9 wt% cause the pink colour of thulites, regardless of symmetry.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Present address: Department of Geological Sciences, Virginia Polytechnic Institute and State University, 4044 Derring Hall, Blacksburg, VA 24061, USA.

References

Abrecht, J., Peters, Tj., and Sommerauer, J. (1978-9). Mere. Sci. geol. 33, 215-21.Google Scholar
Anastasiou, P., and Langer, K. (1977). Contrib. Mineral. Petrol. 60, 225-45.CrossRefGoogle Scholar
Bernotat, W.H., and Bambauer, H.U. (1979). Abstract: Symposium ‘Alpine Geotraversen', Lausanne.Google Scholar
Bertolani, M. (1967). Period. Mineral. 36, 1011-32.Google Scholar
Bianchi, A., and Dal Piaz, G. (1937). Boll. R. Uff. geol. 57, 1-87.Google Scholar
Borg, I.Y., and Smith, D.K. (1969). Geol. Soc. Am. Mere. 122.Google Scholar
Deer, W.A., Howie, R.A., and Zussman, J. (1963). Rock forming minerals, vol. 1.Google Scholar
Ghose, S., and Tsang, T. (1971). Science, 171, 374-6.CrossRefGoogle Scholar
Hewitt, D. (1973). Am. Mineral. 58, 785-91.Google Scholar
Labhart, T.P. (1977). Aarmassiv und Gotthardmassiv. Sammlung geol. Fiihrer, 63. Gebr. Borntrsiger, Berlin.Google Scholar
Lehmann, G. (1978). Fortschr. Mineral. 56, 204-8.Google Scholar
Meixner, H. (1954). Carinthia II, 21.Google Scholar
Myer, G.H. (1965). Am. J. Sci. 263, 78-86.CrossRefGoogle Scholar
Niggli, P., Koenigsberger, J., and Parker, R.L. (1940). Die Mineralien der Schweizer Alpen, Basel.Google Scholar
Schaller, W.T., and Glass, J.J. (1942). Am. Mineral. 27, 519-24.Google Scholar
Seki, Y. (1959). Am. Mineral. 44, 720-30.Google Scholar
Stalder, H.A. (1964). Schweiz. Mineral. Petroor. Mitt. 44, 187-396.Google Scholar
Steck, A. (1968). Eclogae geol. Heir. 61, 19-48.Google Scholar
Storre, B., and Nitsch, K.-H. (1972). Contrib. Mineral. Petrol. 35, 1-10.CrossRefGoogle Scholar
Strens, R.G.J. (1966). Mineral. Mag. 35, 928-44.Google Scholar