Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-13T23:22:47.179Z Has data issue: false hasContentIssue false

The position of vanadium in the crystal structure of zoisite, variety tanzanite: Structural refinement, optical absorption spectroscopy and bond-valence calculations

Published online by Cambridge University Press:  29 June 2023

Peter Bačík*
Affiliation:
Comenius University in Bratislava, Faculty of Natural Sciences, Department of Mineralogy, Petrology and Economic Geology, Ilkovičova 6, 842 15 Bratislava, Slovak Republic Earth Science Institute of the Slovak Academy of Science, Dúbravská cesta 9, 84005 Bratislava, Slovakia
Manfred Wildner
Affiliation:
Institut für Mineralogie und Kristallographie, Geozentrum, Universität Wien, Josef-Holaubek-Platz 2, 1090 Wien, Austria
Jan Cempírek
Affiliation:
Masaryk University, Department of Geological Sciences, Kotlářská 2, 61137 Brno, Czech Republic
Radek Škoda
Affiliation:
Masaryk University, Department of Geological Sciences, Kotlářská 2, 61137 Brno, Czech Republic
Peter Cibula
Affiliation:
Comenius University in Bratislava, Faculty of Natural Sciences, Department of Mineralogy, Petrology and Economic Geology, Ilkovičova 6, 842 15 Bratislava, Slovak Republic
Tomáš Vaculovič
Affiliation:
Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno 62500, Czech Republic
*
Corresponding author: Peter Bačík; Email: peter.bacik@uniba.sk

Abstract

Vanadium is the dominant trace element and chromophore in tanzanite, the most valued gemmological variety of zoisite. The structure of zoisite–tanzanite was obtained by structural refinement to assess the vanadium location in the zoisite structure. However, the small V content in tanzanite evidenced by electron microprobe and laser ablation inductively coupled plasma mass spectrometry limits the exact determination of the V position in the zoisite structure. Structural refinement revealed that the average bond length of the less distorted M1,2O6 octahedron is below 1.90 Å, and M3O6 has slightly longer bonds with an average of ca. 1.96 Å. The M1,2 site is slightly overbonded with a bond-valence sum (BVS) of 3.03 vu, whereas M3 is slightly underbonded (BVS = 2.78 vu). Optical absorption spectra revealed that most V is trivalent, but a small portion is probably in a four-valent state. Therefore, crystal field Superposition Model and Bond-Valence Model calculations were applied based on several necessary assumptions: (1) V occupies octahedral sites; and (2) it can occur in two oxidation states, V3+ or V4+. Crystal field Superposition Model calculations from the optical spectra indicated that V3+ prefers occupying the M1,2 site; the preference of V4+ from the present data was impossible to determine. Bond-Valence Model calculations revealed no unambiguous preference for V3+, although simple bond-length calculation suggests the preference of the M3 site. However, it is quite straightforward that the M1,2 site is better suitable for V4+. If the possible octahedral distortion is considered, the M1,2O6 octahedron is subject to a smaller change in distortion if occupied by V3+ than the M3O6 octahedron. Consequently, considering the results of both the crystal field Superposition Model and Bond-Valence Model calculations, we assume that both V3+ and V4+ prefer the M1,2 site.

Type
Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Andrew G Christy

References

Alvaro, M., Angel, R.J. and Cámara, F. (2012) High-pressure behavior of zoisite. American Mineralogist, 97, 11651176.CrossRefGoogle Scholar
Andreozzi, G.B., Lucchesi, S. and Graziani, G. (2000) Structural study of magnesioaxinite and its crystal-chemical relations with axinite-group minerals. European Journal of Mineralogy, 12, 11851194.CrossRefGoogle Scholar
Andrut, M., Wildner, M. and Rudowicz, C.Z. (2004) Optical absorption spectroscopy in geosciences: Part II: Quantitative aspects of crystal fields. Spectroscopic Methods in Mineralogy, 145188.CrossRefGoogle Scholar
Appel, P., Möller, A. and Schenk, V. (1998) High-pressure granulite facies metamorphism in the Pan-African belt of eastern Tanzania: P-T-t evidence against granulite formation by continent collision. Journal of Metamorphic Geology, 16, 491509.CrossRefGoogle Scholar
Armbruster, T., Bonazzi, P., Akasaka, M., Bermanec, V., Chopin, C., Gieré, R., Heuss-Assbichler, S., Liebscher, A., Menchetti, S., Pan, Y. and Pasero, M. (2006) Recommended nomenclature of epidote-group minerals. European Journal of Mineralogy, 18, 551567.CrossRefGoogle Scholar
Azavant, P. and Lichanot, A. (1993) X-ray scattering factors of oxygen and sulfur ions: an abinitio Hartree–Fock calculation. Acta Crystallographica, A49, 9197.CrossRefGoogle Scholar
Bačík, P. and Fridrichová, J. (2019) The site occupancy assessment in beryl based on bond-length constraints. Minerals, 9, 641.CrossRefGoogle Scholar
Baur, W.H. (1974) The geometry of polyhedral distortions. Predictive relationships for the phosphate group. Acta Crystallographica, B30, 11951215.CrossRefGoogle Scholar
Bocchio, R., Adamo, I., Bordoni, V., Caucia, F. and Diella, V. (2012) Gem-quality zoisite from Merelani (Northeastern Tanzania): Review and new data. Periodico di Mineralogia, 81, 379391.Google Scholar
Bosi, F. (2014) Bond valence at mixed occupancy sites. I. Regular polyhedra. Acta Crystallographica, B70, 864870.Google ScholarPubMed
Brown, I.D. (2006) The Chemical Bond in Inorganic Chemistry. Oxford University Press, Oxford, UK, 288 pp.CrossRefGoogle Scholar
Chang, Y.M., Rudowicz, C. and Yeung, Y.Y. (1994) Crystal field analysis of the 3dN ions at low symmetry sites including the ‘“imaginary”’ terms. Computers in Physics, 8, 583.CrossRefGoogle Scholar
Deer, W.A., Howie, R.A. and Zussman, M.A. (1986) Rock-Forming Minerals, Vol.1b, Disilicates and Ringsilicates. Longman, UK, 629 pp.Google Scholar
Dirlam, D.M., Misiorowski, E.B., Tozer, R., Stark, K.B. and Bassett, A.M. (1992) Gem wealth of Tanzania. Gems & Gemology, 28, 80102.CrossRefGoogle Scholar
Dörsam, G., Liebscher, A., Wunder, B., Franz, G. and Gottschalk, M. (2007) Crystal chemistry of synthetic Ca2Al3Si3O12OH–Sr2Al3Si3O12OH solid-solution series of zoisite and clinozoisite. American Mineralogist, 92, 11331147.CrossRefGoogle Scholar
Faye, G.H. and Nickel, E.H. (1971) On the pleochroism of vanadium-bearing zoisite from Tanzania. The Canadian Mineralogist, 10, 812821.Google Scholar
Feneyrol, J., Giuliani, G., Ohnenstetter, D., Fallick, A.E., Martelat, J.E., Monié, P., Dubessy, J., Rollion-Bard, C., Le Goff, E., Malisa, E., Rakotondrazafy, A.F.M., Pardieu, V., Kahn, T., Ichang'i, D., Venance, E., Voarintsoa, N.R., Ranatsenho, M.M., Simonet, C., Omito, E., Nyamai, C. and Saul, M. (2013) New aspects and perspectives on tsavorite deposits. Ore Geology Reviews, 53, 125.CrossRefGoogle Scholar
Franz, G. and Liebscher, A. (2004) Physical and chemical properties of the epidote minerals: An introduction. Pp. 181 in: Epidotes (Liebscher, Axel and Franz, Gerhard, editors). Reviews in Mineralogy and Geochemistry, 56. Mineralogical Society of America and the Geochemical Society, Chantilly, Virginia, USA.Google Scholar
Franz, G. and Smelik, E.A. (1995) Zoisite-clinozoisite bearing pegmatites and their importance for decompressional melting in eclogites. European Journal of Mineralogy, 7, 14211436.CrossRefGoogle Scholar
Gagné, O.C. and Hawthorne, F.C. (2015) Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen. Acta Crystallographica, B71, 562578.Google ScholarPubMed
Gaines, R.V., Skinner, H.C.W., Foord, E.E., Mason, B. and Rosenzweig, A. (1998) Dana's New Mineralogy. Wiley/VCH, New York, 2693 pp.Google Scholar
Ghose, S. and Tsang, T. (1971) Ordering of V2+, Mn2+, and Fe3+ ions in zoisite, Ca2Al3Si3 O12(OH). Science, 171, 374376.CrossRefGoogle Scholar
Harris, C., Hlongwane, W., Gule, N. and Scheepers, R. (2014) Origin of tanzanite and associated gemstone mineralization at Merelani, Tanzania. South African Journal of Geology, 117, 1530.CrossRefGoogle Scholar
Hauzenberger, C.A., Bauernhofer, A.H., Hoinkes, G., Wallbrecher, E. and Mathu, E.M. (2004) Pan-African high pressure granulites from SE-Kenya: Petrological and geothermobarometric evidence for a polycyclic evolution in the Mozambique belt. Journal of African Earth Sciences, 40, 245268.CrossRefGoogle Scholar
Hauzenberger, C.A., Sommer, H., Fritz, H., Bauerhofer, A., Kröner, A., Hoinkes, G., Wallbrecher, E. and Thöni, M. (2007) SHRIMP U-Pb zircon and Sm-Nd garnet ages from the granulite-facies basement of SE Kenya: Evidence for Neoproterozoic polycyclic assembly of the Mozambique Belt. Journal of the Geological Society, 164, 189201.CrossRefGoogle Scholar
Jobbins, E. A Tresham A, E. and Young, B. R. (1975) Magnesioaxinite, a new mineral found as a blue gemstone from Tanzania. Journal of Gemmology, 14, 368375.CrossRefGoogle Scholar
Leavitt, R.P. (1982) On the role of certain rotational invariants in crystal-field theory. The Journal of Chemical Physics, 77, 16611663.CrossRefGoogle Scholar
Le Goff, E., Deschamps, Y. and Guerrot, C. (2010) Tectonic implications of new single zircon Pb-Pb evaporation data in the Lossogonoi and Longido ruby-districts, Mozambican metamorphic Belt of north-eastern Tanzania. Comptes Rendus – Geoscience, 342, 3645.CrossRefGoogle Scholar
Liebscher, A. (2004) Spectroscopy of epidote minerals. Pp. 125170 in: Epidotes (Liebscher, Axel and Franz, Gerhard, editors). Reviews in Mineralogy and Geochemistry, 56. Mineralogical Society of America and the Geochemical Society, Chantilly, Virginia, USA.CrossRefGoogle Scholar
Liebscher, A., Gottschalk, M. and Franz, G. (2002) The substitution Fe3+-Al and the isosymmetric displacive phase transition in synthetic zoisite: A powder X-ray and infrared spectroscopy study. American Mineralogist, 87, 909921.CrossRefGoogle Scholar
Malisa, E.P. (1998) Application of graphite as a geothermometer in hydrothermally altered metamorphic rocks of the Merelani-Lelatema area, Mozambique Belt, northeastern Tanzania. Journal of African Earth Sciences, 26, 313316.CrossRefGoogle Scholar
Malisa, E.P.J. (2004) Trace elements characterization of the hydrothermally deposited tanzanite and green grossular in the Merelani – Lelatema shear zone, northeastern Tanzania. Tanzania Journal of Science, 29, 4560.CrossRefGoogle Scholar
Muhongo, S. and Lenoir, J.L. (1994) Pan-African granulite-facies metamorphism in the Mozambique Belt of Tanzania: U-Pb zircon geochronology. Journal of the Geological Society, 151, 343347.CrossRefGoogle Scholar
Muhongo, S., Tuisku, P. and Mtoni, Y. (1999) Pan-African pressure-temperature evolution of the Merelani area in the Mozambique Belt in northeast Tanzania. Journal of African Earth Sciences, 29, 353365.CrossRefGoogle Scholar
Newman, D.J. (1971) Theory of lanthanide crystal fields. Advances in Physics, 20, 197256.CrossRefGoogle Scholar
Newman, D.J. and Ng, B. (1989) The superposition model of crystal fields. Reports on Progress in Physics, 52, 699.CrossRefGoogle Scholar
Newman, D. and Ng, B. (2000) Crystal Field Handbook. Cambridge University Press, Cambridge, UK, 304 pp.CrossRefGoogle Scholar
Pluthametwisute, T., Wanthanachaisaeng, B., Saiyasombat, C. and Sutthirat, C. (2020) Cause of Color Modification in Tanzanite after Heat Treatment. Molecules, 25, 3743.CrossRefGoogle ScholarPubMed
Robinson, K., Gibbs, G. V. and Ribbe, P.H. (1971) Quadratic elongation: A quantitative measure of distortion in coordination polyhedra. Science, 172, 567570.CrossRefGoogle ScholarPubMed
Rudowicz, C., Yeung, Y.Y., Du, M.L. and Chang, Y.M. (1992) Manual for the crystal [ligand] field computer package with appendix: Tables of values of the parameters B, C, and ξ for 3d4 and 3d6 free ions and ions in crystals. Research Report, Department of Applied Science, City Polytechnic of Hong Kong, Hong Kong, 45 pp.Google Scholar
Rudowicz, C., Gnutek, P. and Açikgöz, M. (2019) Superposition model in electron magnetic resonance spectroscopy–a primer for experimentalists with illustrative applications and literature database. Applied Spectroscopy Reviews, 54, 673718.CrossRefGoogle Scholar
Schindler, M., Hawthorne, F.C. and Baur, W.H. (2000) Crystal chemical aspects of vanadium: Polyhedral geometries, characteristic bond valences, and polymerization of (VOn) polyhedra. Chemistry of Materials, 12, 12481259.CrossRefGoogle Scholar
Schmetzer, K. (1982) Absorption spectroscopy and colour of V3+-bearing natural oxides and silicates – a contribution to the crystal chemistry of vanadium. Neues Jahrbuch für Mineralogie – Abhandlungen, 144, 73106.CrossRefGoogle Scholar
Schmetzer, K. and Bank, H. (1978) Bluish–green zoisite from Merelani, Tanzania. Gems & Gemology, 16, 121122.Google Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A32, 751767.CrossRefGoogle Scholar
Sheldrick, G.M. (2015) Crystal structure refinement with SHELXL. Acta Crystallographica, C71, 38.Google ScholarPubMed
Škoda, R., Cempírek, J., Filip, J., Novák, M., Veselovský, F. and Čtvrtlík, R. (2012) Allanite-(Nd), CaNdAl2Fe2+(SiO4)(Si2O7)O(OH), a new mineral from Åskagen, Sweden. American Mineralogist, 97, 983988.CrossRefGoogle Scholar
Tsang, T. and Ghose, S. (1971a) Electron paramagnetic resonance of V2+, Mn2+, Fe3+, and optical spectra of V3+ in blue zoisite, Ca2Al3Si3O12(OH). The Journal of Chemical Physics, 54, 856862.CrossRefGoogle Scholar
Tsang, T. and Ghose, S. (1971b) Ordering of transition metal ions in zoisite. Eos Transactions American Geophysical Union, 52, 380381.Google Scholar
Wildner, M. (1992) On the geometry of Co(II)O6 polyhedra in inorganic compounds. Zeitschrift für Kristallographie – Crystalline Materials, 202, 5170.CrossRefGoogle Scholar
Wildner, M., Andrut, M. and Rudowicz, C.Z. (2004) Optical absorption spectroscopy in geosciences. Part I: Basic concepts of crystal field theory. pp. 93143 in:Spectroscopic Methods in Mineralogy (Beran, Anton and Libowitzk, Eugen, editors). EMU Notes In Mineralogy, 6, European Mineralogical Union.CrossRefGoogle Scholar
Wildner, M., Beran, A. and Koller, F. (2013) Spectroscopic characterisation and crystal field calculations of varicoloured kyanites from Loliondo, Tanzania. Mineralogy and Petrology, 107, 289310.CrossRefGoogle Scholar
Yang, Z.Y., Hao, Y., Rudowicz, C. and Yeung, Y.Y. (2004) Theoretical investigations of the microscopic spin Hamiltonian parameters including the spin-spin and spin-other-orbit interactions for Ni2+(3d8) ions in trigonal crystal fields. Journal of Physics Condensed Matter, 16, 34813494.CrossRefGoogle Scholar
Yang, S., Ye, H., Liu, Y., Lu, T., Liu, F., Gu, T. and Gurzhiy, V. V. (2021) The different inclusions’ characteristics between natural and heat-treated tanzanite: evidence from Raman spectroscopy. Crystals, 11, 1302.CrossRefGoogle Scholar
Zancanella, V. (2004) Tanzanite: una tra le gemme più affascinanti. Raffaele Zanacanella s.r.l. edition, Cavalese, Italy, 118 pp.Google Scholar
Supplementary material: PDF

Bačík et al. supplementary material

Bačík et al. supplementary material 1

Download Bačík et al. supplementary material(PDF)
PDF 100.5 KB
Supplementary material: File

Bačík et al. supplementary material

Bačík et al. supplementary material 2

Download Bačík et al. supplementary material(File)
File 543.9 KB