Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-26T21:10:19.893Z Has data issue: false hasContentIssue false

Preferred orientation of experimentally deformed pyrite measured by means of rieutron diffraction

Published online by Cambridge University Press:  05 July 2018

H. Siemes
Affiliation:
Institut für Mineralogie und Lagerstättenlehre, RWTH Aachen, 5100 Aachen, Germany
D. Zilles
Affiliation:
Institut für Mineralogie und Lagerstättenlehre, RWTH Aachen, 5100 Aachen, Germany
S. F. Cox
Affiliation:
Research School of Earth Sciences, Australian National University, Canberra ACT 2601, Australia
P. Merz
Affiliation:
Mineralogisches Institut, Universität Bonn, Auβenstelle Forschungszentrum Jülich (KFA), 5170 Jülich, Germany
W. Schäfer
Affiliation:
Mineralogisches Institut, Universität Bonn, Auβenstelle Forschungszentrum Jülich (KFA), 5170 Jülich, Germany
G. Will
Affiliation:
Mineralogisches Institut, Universität Bonn, Auβenstelle Forschungszentrum Jülich (KFA), 5170 Jülich, Germany
H. Schaeben
Affiliation:
Laboratoire de Metallurgie des Materiaux Polycristallins (LM2P), Universite de Metz, 57045 Metz, France
K. Kunze
Affiliation:
Brigham Young University, Dept. of Manufacturing Engineering, Provo, UT 84602, USA

Abstract

Neutron diffraction texture goniometry indicates that naturally deformed polycrystalline pyrite ores from Mt. Lyell (Tasmania) and Degtiarka (Ural Mountains) have weak lattice preferred orientations. During experimental deformation involving dislocation flow at elevated temperatures and pressures, these initial fabrics have been modified to produce new lattice preferred orientations.

Polycrystalline pyrite form Mt. Lyell (B-1) has an initial <111> - fibre texture perpendicular to a grain-size layering. After 24% shortening perpendicular to the <111> - fibre axis at 700°C a new, but weak <100> texture has developed parallel to the shortening axis. The Degtiarka pyrite (PN-6) initially has two weak fibre components. The somewhat stronger component is a <100>-fibre texture, similar to that in the experimentally deformed B-1 pyrite. The other one is a <111> - fibre texture similar to the intital B-1 preferred orientation. After 30% shortening oblique to both initial fibre axes at 600°C weak <110>- and <111>-fibre textures have developed. The experimentally produced fabrics have developed during deformation involving dislocation flow, dynamic recrystallisation and some microcracking. Intergranular sliding may also have been involved. Differences between lattice preferred orientations developed in the 600°C and 700°C experiments are interpreted to indicate a change in the dominant flow mechanism with changing temperature.

In comparison with other cubic minerals that have been deformed experimentally by dislocation flow mechanisms, the pyrite shows an unusually weak preferred orientation which can be detected only by means of neutron diffraction texture goniometry.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barrett, C. S. and Levenson, L. H. (1940) Trans. AIME 137 (1940) 112-127, cited in Mecking, H. (1985) Textures of Metals. In Preferred Orientation in Deformed Metals and Rocks: An Introduction to Modern Texture Analysis (Wenk, H.-R., ed.). Academic Press, Orlando, Ch. 13, 267-306.Google Scholar
Bunge, H. J. (1985) Representation of Preferred Orientations. Ibid., Ch. 4, 73-108.Google Scholar
Bunge, H. J. and Esling, C. (1985) The Harmonic Method. Ibid., Ch. 5, 109-22.Google Scholar
Carter, N. L. and Heard, H. C. (1970) Temperature and rate dependent deformation of halite. Am. J. Sci. 269, 193-249.Google Scholar
Couderc, J.-J., Bras, J., Fagot, M., and Levade, C. (1980) Etude par microscopic electronic en trans-mission de le'etat de deformation de pyrite de differentes provenances. Bull. Mineral. 103, 547–57.Google Scholar
Cox, S. F. (1987) Flow Mechanism in Sulphide Min-erals. In Mechanical and Chemical (Re)mobilisation of Metalliferous Mineralisation (Marshall, B. and Gilligan, L. B., eds.). Ore Geology Rev. 2, 133–71.Google Scholar
Cox, S. F. Etheridge, M. A., and Hobbs, B. E. (1981) The Experimental Ductile Deformation of Polycrystalline and Single Crystal Pyrite. Econ. Geol. 76, 2105–17.Google Scholar
Foitzik, A., Skrotzki, W., and Haasen, P. (1991) Slip on {111} planes in lead sulphide. Materials Sci. Engin., A132, 77-82.Google Scholar
Gehlen, v., K. (1971) X-Ray Analysis of Preferred Orientation of Ore Minerals—in Particular with the Pole-figure Goniometer. Siemens Rev., 5th Spec. Issue, 38, 4564.Google Scholar
Graf, J. L., Skinner, B. J., Bras, J., Fagot, M. Levade, C. and Couderc, J.-J. (1981) Transmission Electron Microscope Observation of Plastic Deformation in Experimentally Deformed Pyrite. Econ. Geol. 76, 738–42.Google Scholar
Käimpf, H., Ertel, A., Bankwitz, P., Betzl, M., and Zäinker, G. (1987) Texturanalyse an Evaporiten der Lagerstäitte Zielitz-Nachweis einer Fasertextur in Halititen. Zeitschr. angew. Geol. 33, 104–7.Google Scholar
Kelly, A. and Groves, G. W. (1970) Crystallography and Crystal Defects, Longman London, p. 428.Google Scholar
Kern, H. and Braun, G. (1973) Deformation und Gefiigeregelung yon Steinsalz im Temperaturbereich 20-200°C Contrib. Mineral. Petrol. 40, 169–81.Google Scholar
Kern, H. and Braun, G. and Richter, A. (1985) Microstructures and Textures in Evaporites. In Preferred Orientation in Deformed Metals and Rocks: An Introduction to Modern Texture Analysis (Wenk, H.-R., ed.). Academic Press Orlando, Ch. 15, 317-33.Google Scholar
Kollenberg, W. and Siemes, H. (1983) Experimental Deformation of a Sphalerite-Garnet Ore under a Confining Pressure of 300 MPa and at Temperatures between 25°C and 300°C In Deformation of Multi-Phase and Particle Containing Materials, Proc. 4th Riso Int. Symp. on Metallurgy and Materials Science (J. B. Bilde-Sorensen, N. Hansen, A. Horeswell, T. Leffers and H. Lilholt, eds.), 351-6.Google Scholar
Lang, H. (1968) Stauchversuche mit polykristallinen Kupferkiesen und deren Ergebnisse unter besonderer Beracksichtigung der Gefiigeregelung. Dissertation RWTH Aachen.Google Scholar
Levade, C., Couderc, J.-J., Bras, J. and Fagot, M. (1982) Transmission Electron Microscopy Study of Experimentally Deformed Pyrite. Philos. Mag. A46, 307-325.Google Scholar
Matthies, S. (1191) On the Principle of Conditional Ghost Correction and its Realisation in Existing Correction (oncepts. Textures and Microstructures, 14-18, 1-12 (Special Issue: Ninth Int. Conf. Text. Mat. (Icotorr 9), Avignon 1990, Eds. Esling, C. and Penelle, R.).Google Scholar
Matthies, S. Vinel, G. W., and Helming, K. (1987) Standard Distributions in Texture Analysis, Maps for the Case of Cubic-Ormorhombic Symmetry. Akademie Verlag Berlin, Vol. t, p. 442.Google Scholar
Matthies, S. Helming, K., Steinkopff, T., and Kunze, K. (1988a) Standard Distributions for the Case of Fibre Textures. Phys. Star. SoL (b), 150, K1-K5.Google Scholar
Matthies, S. Helming, K., Steinkopff, T., and Kunze, K. Vinel, G. W., and Helming, K. (1988b) Standard Distributions in Texure Analysis, Maps for the Case of Cubic-Orthol hombic Symmetry. Akademie Verlag Berlin, Vol. 2, p. 256.Google Scholar
Matthies, S. Helming, K., and Kunze, K. (1990a) On the Representati,m of Orientation Distributions in Texture anab'sis by o-Sections, I. General Properties of o-Sections: Phys. Stat. Sol. (b), 157, 7183. II. Consideration of Crystal and Sample Symmetry, Examples. Ibid., 157, 489-507.Google Scholar
Matthies, S. Vinel, G. W. and Helming, K. (1990b) Standard Distributions in Texture Analysis, Maps for the Case of Cubic-Orthorhombic Symmetry. Akademie Verlag Berlin, Vol. 3, p. 480.Google Scholar
Mises, v., R. (1928) Mechanik der plastischen Formäin-derung von Kristallen. Z. Angew. Math. Mech., 8, 161–85.Google Scholar
Müller, P. and Siemes, H. (1972) Zur Festigkeit und Geftigeregelung von experimentell verformten Mag-netiterzen. Neues Jahrb. MineraL, Abh., 117, 3960.Google Scholar
Natale, P. (1971) Prima segnalazione de strutture de deformazione plastica della pirite. Rend. Soc. Mineral. Petrol. ltal. 27, 537–50.Google Scholar
Pawlik, K., Pospiech, J. and Lticke, K. (1991) The ODF Approximation from Pole Figures with the Aid of the ADC Method. Textures and Microstructures, 14—18, 25-30 (Special Issue: Ninth Ont. Conf. Text. Mat. (Icotom 9), Avignon 1990, Eds. Esling, C and Penelle, R.)Google Scholar
Pratt, P. L., Roy, C. and Evans, A. G. (1966) The Role of Grain Bot,ndaries in the Plastic Deformation of Calcium Fluo6de, in Materials Science Research, Vol. 3: The Role of Grain Boundaries and Surfaces in Ceramics (Kriegel, W. W. and Palmour III, H., eds.), Plenum Press, New York, Ch. 14, 225-41.Google Scholar
Saynisch, H. J. (1970) Festigkeitsund Gefiigeuntersu-chungen an experimentell und nattirlich verformten Zinkblendeerzen In Experimental and Natural Rock Deformation (P. Paulitsch, ed.). Springer Verlag, Berlin, 209-52.Google Scholar
Schaeben, H. (1988) Entropy Optimisation in Texture Goniometry, I. Methodology. Phys. Stat. Sol. (b), 148, 6372.Google Scholar
Schaeben, H. (1991) Entropy Optimisation in Quantitative Texture Analysis. II Application to Pole-to-Orien-tation Density Inversion. J. Appl. Phys., 69, 1320–9.Google Scholar
Schaeben, H. and Siemes, H. (1991) Recovering ODF's with Maximum Entropy and their Geoscientific Interpre-tation. Textures and Microstructures, 14-18, 31-36 (Special Issue: Ninth Int. Conf. Text. Mat. (Icotom 9), Avignon 1990, Eds. Esling, C and Penelle, R.)Google Scholar
Schaeben, H. and Auerbach, S. (1990) Entropy Optimisation in Texture Goniometry, II. Practical Applications. Phys. Star. Sol. (b), 158, 407–25.Google Scholar
Siemes, H. (1970) Experimentelle Verformung von Bleiglanzerzen. In Experimental and Natural Rock Deformation (P. Paulitsch, ed.). Springer Verlag, Berlin, 165208.Google Scholar
Siemes, H. (1976) Recovery and Recrystallisation of Deformed Galena, Econ. Geology, 71, 763–71.Google Scholar
Siemes, H. and Hennig-Michaeli, Ch. (1985) Ore Minerals. In Preferred Orientation in Deformed Metals and Rocks: An Introduction to Modern Texture Analysis (Wenk, H.-R., ed.). Academic Press Orlando, Ch. 16, 335-60.Google Scholar
Vadon, A. and Heizmann, J. J. (1991) A New Program to Calculate the Texture Vector of the Vector Method. Textures and Microstructures 14-18, 37-44 (Special Issue: Ninth Int. Conf. Text. Mat. (Icotom 9), Avignon 1990, Eds. Esling, C. and Penelle, R.)Google Scholar
Will, G., Schäifer, W., and Merz, P. (1989) Texture Analysis by Neutron Diffraction Using a Linear Position Sensitive Detector. Textures and Microstructures, 10, 375–87.Google Scholar
Zavaritsky, A. N. (1948) Metasomatism and Metamor-phism in the Pyrite Deposits of the Urals. XVIII Int. Geol. Congress, London, Sect. B, Part III, 102-108.Google Scholar
Zilles, D. (1989) Texturuntersuchungen und mikrosko-pische Charakterisierung yon experimentell verformten polykristallinen Pyrit-Erzen. Diplomarbeit RWTH Aachen, unpubl., 105 p.Google Scholar