Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T08:50:55.516Z Has data issue: false hasContentIssue false

Refinement of the crystal structure of zoned philipsbornite–hidalgoite from the Tsumeb mine, Namibia, and hydrogen bonding in the D2+G3+3(T5+O4)(TO3OH)(OH)6 alunite structures

Published online by Cambridge University Press:  05 July 2018

M. A. Cooper
Affiliation:
Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
F. C. Hawthorne*
Affiliation:
Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada

Abstract

The crystal structure of zoned philipsbornite – hidalgoite, hexagonal (rhombohedral), Rm , Z = 3: a = 7.1142(4), c = 17.0973(9) A ˚ , V = 749.4(1) Å3, from the Tsumeb mine, Namibia, has been refined to R1 = 1.68% for 301 unique reflections collected on a Bruker D8 three-circle diffractometer equipped with a rotating-anode generator, multilayer optics and an APEX-II CCD detector. Chemical analysis by electron microprobe showed zoned crystals with a rim enriched in S and Fe relative to the core. The core composition is SO3 3.31, As2O5 30.57, Al2O3 23.05, FeO 1.44, PbO 33.94, H2Ocalc 9.58, total 101.79 wt.%, corresponding to Pb0.982+(Al2.92Fe0.132+)(AsO4)[(As0.72S0.27)O3.14(OH)0.85](OH)6; and the rim composition is SO3 8.88, As2O5 22.63, Al2O3 22.90, FeO 2.57, PbO 34.91, H2Ocalc 9.27, total 101.16 wt.%, corresponding to Pb0.992+(Al2.85Fe0.232+)(AsO4)[(As0.25S0.70)O3.30(OH)0.50](OH)6. Philipsbornite – hidalgoite has the alunite-type structure, sheets of corner-sharing octahedra, decorated on top and bottom by [(As,S)O4] and (AsO3OH) tetrahedra, that are linked into a three-dimensional structure by [12]-coordinated Pb2+ cations and hydrogen bonds. A new hydrogen-bonding scheme for the D2+G33+(T5+O4)(TO3OH)(OH)6 minerals is proposed.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bayliss, P., Kolitsch, U., Nickel, E.H. and Pring, A. (2010) Alunite supergroup: recommended nomen-clature. Mineralogical Magazine, 74, 919927.CrossRefGoogle Scholar
Blount, A.M. (1974) The crystal structure of crandallite. American Mineralogist, 59, 4147.Google Scholar
Brown, I.D. (2002) The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. Oxford University Press, Oxford, UK.Google Scholar
Brown, I.D. and Altermatt, D. (1985) Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystallographica, B41, 244247.CrossRefGoogle Scholar
Bruker (1997) SHELXTL Reference Manual 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.Google Scholar
Dzikowski, T.J., Groat, LA. and Jambor, J.L. (2006) The symmetry and crystal structure of gorceixite, BaAl3[PO3(O,OH)]2(OH)6, a member of the alunite supergroup. The Canadian Mineralogist, 44, 951958.CrossRefGoogle Scholar
Gebhard, G. (1999) Tsumeb II. A Unique Mineral Locality. GG Publishing, Grossenseifen, Germany.Google Scholar
Giuseppetti, G and Tadini, C. (1980) The crystal structure of osarizawaite. Neues Jahrbuch fur Mineralogie Monatshefte, 1980, 401407.Google Scholar
Giuseppetti, G and Tadini, C. (1987) Corkite, PbFe3(SO4)(PO4)(OH)6, its crystal structure and ordered arrangement of the tetrahedral cations. Neues Jahrbuch fur Mineralogie, Monatshefte, 1987, 7181.Google Scholar
Grey, I.E., Mumme, W.G, Mills, S.J., Birch, W.D. and Wilson, N.C. (2009) The crystal chemical role of Zn in alunite-type minerals: structure refinements for kintoreite and zincian kintoreite. American Mineralogist, 94, 676683.CrossRefGoogle Scholar
Hawthorne, F.C., Ungaretti, L. and Oberti, R. (1995) Site populations in minerals: terminology and presentation of results of crystal-structure refine-ment. The Canadian Mineralogist, 33, 907911.Google Scholar
Kato, T. (1987) Further refinement of the goyazite structure. Mineralogical Journal, 13, 390396.CrossRefGoogle Scholar
Kolitsch, U. and Pring, A. (2001) Crystal chemistry of the crandallite, beudantite and alunite groups: a review and evaluation of the suitability as storage materials for toxic metals. Journal of Mineralogical and Petrological Sciences, 96, 6778.CrossRefGoogle Scholar
Kolitsch, U., Slade, P.G, Tiekink, E.R.T. and Pring, A. (1999a) The structure of antimonian dussertite and the role of antimony in oxysalt minerals. Mineralogical Magazine, 63, 1726.CrossRefGoogle Scholar
Kolitsch, U., Taylor, M.R., Fallon, GD. and Pring, A. (1999b) Springcreekite, BaV3+(PO4)2(OH,H2O)6, a new member of the crandallite group, from the Spring Creek mine, South Australia: the first natural V +-member of the alunite family and its crystal structure. Neues Jahrbuch fur Mineralogie, Monatshefte, 1999, 529544.Google Scholar
Kolitsch, U., Tiekink, E.R.T., Slade, P.G., Taylor, M.R. and Pring. A. (1999c) Hinsdalite and plumbogum-mite, their atomic arrangements and disordered lead sites. European Journal of Mineralogy, 11, 513520.CrossRefGoogle Scholar
Mills, S.J., Kampf, A.R., Raudsepp, M. and Christy, A.G. (2009) The crystal structure of Ga-rich plumbogummite from Tsumeb, Namibia. Mineralogical Magazine, 73, 837845.CrossRefGoogle Scholar
Pinch. W.W. and Wilson, W.E. (1977) Tsumeb V. Minerals: A descriptive list. Mineralogical Record, 8(3), 1737.Google Scholar
Pouchou, J.L. and Pichoir, F. (1985) ‘PAP’ (p(pZ) procedure for improved quantitative microanalysis. Pp. 104106 in: Microbeam Analysis (Armstrong, J.T., editor). San Francisco Press, San Francisco, California, USA.Google Scholar
Sato, E., Nakai, I., Miyawaki, R. and Matsubara, S. (2009) Crystal structures of alunite family minerals: beaverite, corkite, alunite, natroalunite, jarosite, svanbergite, and woodhouseite. Neues Jahrbuch fur Mineralogie, Abhandlungen, 183, 313322 CrossRefGoogle Scholar
Schmetzer, K., Tremmel, G and Medenbach, O. (1982) Philipsbornit, PbAl3H[(AsO4)2], aus Tsumeb, Namibia—ein zweites Vorkommen. Neues Jahrbuch fur Mineralogie, Monatshefte, 1982, 248254.Google Scholar
Sheldrick, GM. (2008) A short history of SHELX. Acta Crystallographica, A64, 112122.CrossRefGoogle Scholar
Smith, R.L., Simons, F.S. and Vlisidis, A.C. (1953) Hidalgoite, a new mineral. American Mineralogist, 38, 12181224.Google Scholar
Szymanski, J.T. (1985) The crystal structure of plumbojarosite, Pb[Fe3(SO4)2(OH)6]2 . The Canadian Mineralogist, 23, 659668.Google Scholar
Walenta, K., Zwiener, M. and Dunn, P.J. (1982) Philipsbornit, ein neues Mineral der Crandallitreihe von Dundas auf Tasmania. Neues Jahrbuch fur Mineralogie, Monatshefte, 1982, 15.Google Scholar
Weber, D. and Wilson, W.E. (1977) Tsumeb IV. Geology. Mineralogical Record, 8(3), 1416.Google Scholar