Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-28T14:22:35.437Z Has data issue: false hasContentIssue false

Relict clinopyroxenes from within-plate metadolerites of the Petroi Metabasalt, the New England Fold Belt, Australia

Published online by Cambridge University Press:  05 July 2018

Deepanker Asthana*
Affiliation:
Department of Geology and Geophysics, The University of Sydney, N.S.W. 2006, Australia

Abstract

Relict clinopyroxenes from metadolerites of the Early Permian Petroi Metabasalt formation, studied by electron microprobe, show a limited compositional range near the diopside-augite boundary in the pyroxene quadrilateral. Clinopyroxene analyses from three metadolerites, grouped in approximately equal Fs contents, define an overall smooth trend between Fs10 and Fs16. This is typical of clinopyroxenes from mildly alkaline basic magmas. Pyroxene stoichiometry suggests high Fe3+ contents (0.04 to 0.20 a.f.u.), which with high Al (0.10 to 0.31 a.f.u.) and Ti (0.03 to 0.08 a.f.u.) implies that CaTiAl2O6 and CaFe3+AlSiO6 are important ‘other components’. Relative Alz in CaFe3+AlSiO6 decreases and consequently CaTiAl2O6 increases with progressive fractionation. This, with the Fe2+:Fe3+ ratios in the Petroi clinopyroxenes, suggests falling ƒO2 in the magma with fractionation. The ƒO2 controlled entry of Alz, Tiy and Nax into the clinopyroxenes and hence the Petroi clinopyroxene trend.

Type
Mineralogy
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Present address: Dept. of Applied Geology, Indian School of Mines, Dhanbad-826004, India.

References

Akasaka, M. and Onuma, K. (1980) The join CaMg-Si2Of)-CaFeAlSiO6,-CaTiAl2O6 and its bearing on the Ti-rich fassaitic pyroxenes. Contrib. Mineral. Petrol, 71, 301–12.CrossRefGoogle Scholar
Aoki, K.-I. (1964) Clinopyroxenes from alkaline rocks of Japan. Am. Mineral, 49, 1199–223.Google Scholar
Asthana, D. (1984) Intermediate, Mafic, and Vltramafic rocks from the eastern part of the New England Fold Belt: geochemistry, relict mineralogy, magmatic affinities and tectonic significance. Ph.D. thesis. University of Sydney (unpubl.).Google Scholar
Asthana, D. (1990) Petrogenetic significance of relict clinopyroxenes from Early Permian ocean-floor mafic rocks of the McGraths Hump Metabasalt, The New England Fold Belt, Australia. (Submitted) J. Petrol. Google Scholar
Asthana, D. and Leitch, E. C. (1985) Petroi Metabasalt: alkaline within-plate mafic rocks from the Nambucca Slate Belt, northeastern New South Wales. Austral. J. Earth. Sci., 32, 261–77.CrossRefGoogle Scholar
Barberi, F., Bizouard, H., and Varet, J. (1971) Nature of the clinopyroxene and iron enrichment in alkalic and transitional basaltic magmas. Contrib. Mineral. Petrol., 33, 93107.CrossRefGoogle Scholar
Basaltic Volcanism Study Project (1981) Basaltic vol-canism on the Terrestrial Planets. Pergamon, New York, 1286 pp.Google Scholar
Brown, G. M. (1957) Pyroxenes from the early and middle stages of fractionation of the Skaergaard intrusion, east Greenland. Mineral. Mag., 31, 511–43.Google Scholar
Brown, G. M. (1967) Mineralogy of basaltic rocks. In Basalts Vol. 1 (Hess, H. H. and Poldervaart, A., eds.), Interscience Publishers, New York, 103-63.Google Scholar
Carmichael, I. S. E. (1967) The mineralogy of Thingmuli, a Tertiary volcano in eastern Iceland. Am. Mineral, 52, 1815–1.Google Scholar
Coleman, R. G. (1977) Ophiolites: Ancient oceanic lithosphere? Springer-Verlag, New York.CrossRefGoogle Scholar
Coombs, D. S. (1963) Trends and affinities of basaltic magmas and pyroxenes as illustrated on the diopside-olivine-silica diagram. Mineral. Soc. Am., Spec. Pap., 1, 227–50.Google Scholar
Cundari, A. and Salviulo, G. (1989) Ti solubility in diopsidic pyroxene from a suite of New South Wales leucitites (Australia). Lithos, 22, 191–8.CrossRefGoogle Scholar
Faraone, D., Molin, G., and Zanazzi, P. F. (1988) Clinopyroxenes from Vulcano (Aeolian Islands, Italy): crystal chemistry and cooling history. Lithos, 22, 113–26.CrossRefGoogle Scholar
Fodor, R. V., Keil, K., and Bunch, T. E. (1975) Contributions to the mineral chemistry of the Haw-aiian rocks. IV. Pyroxene in rocks from Haleakala and West Maui Volcanoes, Maui, Hawaii. Contrib. Mineral. Petrol, 50, 173–95.CrossRefGoogle Scholar
Fodor, R. V., Berkley, J. L., Keil, K., Husler, J. W., Ma, M.-S., and Schmitt, R. A. (1980) Petrology of basalt drilled from the Galapagos Spreading Centre, DSDP leg 54. In Initial Reports of the DSDP 54, (Rosendahl, B. R. and Hekinian, R., eds.) pp. 737-49. U.S. Govt. Printing Office, Washington D.C. Google Scholar
Foit, F. F. Jr., Hooper, R. L., and Rosenberg, P. E. (1987) An unusual pyroxene, melilite and iron oxide mineral assemblage in a coal-fire buchite from Buffalo, Wyoming. Am. Mineral, 72, 134–47.Google Scholar
Garcia, M. O. (1978) Criteria for the identification of ancient volcanic arcs. Earth. Sci. Review, 14, 147–65.CrossRefGoogle Scholar
Ghose, S., Okamura, F. P., and Ohashi, H. (1986) The crystal structure of CaFe3+SiAlO6 and the crystal chemistry of Fe3+Al3+ substitution in calcium Tscher-mak's pyroxene. Contrib. Mineral. Petrol, 92, 530–5.CrossRefGoogle Scholar
Gibb, F. G. F. (1973) The zoned clinopyroxenes of the Shiant Isles sill, Scotland. J. Petrol. 14, 203–30.CrossRefGoogle Scholar
Gupta, A. K., Onuma, K., Yagi, K., and Lidiak, E. G. (1973) Effects of silica concentration on the diopside pyroxenes in the system diopside- CaTiAl2O6-SiO2. Contrib. Mineral. Petrol, 41, 333–44.CrossRefGoogle Scholar
Himmelberg, G. R., Loney, R. A., and Nabelek, P. I. (1987) Petrogenesis of gabbronorite at Yakobi and northwest Chichagof Islands, Alaska. Geol. Soc. Am. Bull, 98, 265–79.2.0.CO;2>CrossRefGoogle Scholar
Huckenholz, H. G., Lindhuber, W., and Springer, J. (1974) The join CaSiO3-Al2O3-Fe2O3 of the CaO-Al2O5-Fe2O3-SiO2 quarternary system and its bearing on the formation of granditic garnets and fassiate pyroxenes. Neues Jahrb. Mineral. Abh., 121, 161207.Google Scholar
Huebner, J. S. (1980) Pyroxene phase equilibria at low pressure. In Pyroxenes (Prewitt, C. T., ed.), 213-8 Mineral. Soc. Amer, Reviews in Mineralogy, 7.CrossRefGoogle Scholar
Kushiro, I. (1960) Si-Al relation in clinopyroxenes from igneous rocks. Am. J. Sci., 258, 548–54.CrossRefGoogle Scholar
Larsen, L. M. (1976) Clinopyroxenes and coexisting mafic minerals from the alkaline Ilimaussaq Intru-sion, South Greenland. J. Petrol, 17, 258–90.CrossRefGoogle Scholar
Laverne, C. (1987) Unusual occurrences of aegirine-augite, fassaite and melanite in oceanic basalts. (DSDP Hole 504 B). Lithos, 20, 135–51.CrossRefGoogle Scholar
LeBas, N. J. (1962) The role of aluminium in igneous clinopyroxenes with relation to their parentage. Am. J. Sci., 260, 267–88.CrossRefGoogle Scholar
Leitch, E. C. (1976) Zonation of low-grade regional metamorphic rocks, Nambucca Slate Belt, north-eastern New South Wales. J. Geol Soc. Austral, 22, 413–22.CrossRefGoogle Scholar
Leitch, E. C. (1978) Structural succession in a Late Palaeozoic slate belt and its tectonic significance. Tectonophysics, 47, 311–23.CrossRefGoogle Scholar
Leitch, E. C. and Asthana, D. (1986) Rhyolite, alkali basalt and ocean floor mafic rocks in the Early Permian Barnard Basin, Southern New England Fold Belt, Australia. Internal. Volcanol Congress, New Zealand (abstr.), p. 176.Google Scholar
Leitch, E. C. and McDougall, I. (1979) The age of orogenesis in the Nambucca Slate Belt: a K-Ar study of low-grade regional metamorphic rocks. J. Geol. Soc. Austral, 26, 111–9.CrossRefGoogle Scholar
Leitch, E. C. and Scheibner, E. (1987) Stratotectonic terranes of the Eastern Australian Tasmanides. In Terrane Accretion and Orogenic Belts (Leitch, E. C. and Scheibner, E., eds.), 1-19. Geodynamic Series 19, Amer. Geophysical Union, Washington, D.C.CrossRefGoogle Scholar
Leterrier, J., Maury, R. C., Thonon, P., Girard, D., and Marchal, M. (1982) Clinopyroxene composition as a method of identification of the magmatic affinities of paleo-volcanic series. Earth. Planet. Sci. Lett., 59, 139–54.CrossRefGoogle Scholar
Lindsley, D. H. (1983) Pyroxene thermometry. Am. Mineral, 68, 477–93.Google Scholar
Lindsley, D. H. and Andersen, D. J. (1983) A two-pyroxene thermometer. Proceedings 13th Lunar Planet. Sci. Conf., Part 2. J. Geophys. Res., 88, A887906.CrossRefGoogle Scholar
Manning, C. E. and Bird, D. K. (1986) Hydrothermal clinopyroxenes of the Skaergaard intrusion. Contrib. Mineral. Petrol, 92, 437–47.CrossRefGoogle Scholar
Maruyama, S. and Liou, J. G. (1985) The stability of Ca-Na pyroxene in low-grade metabasites of high-pressure intermediate facies series. Am. Mineral., 70, 1629.Google Scholar
Mattey, D. A. and Muir, J. D. (1980) Geochemistry and mineralogy of basalts from the Galapagos Spreading Centre, DSDP Leg 54. In Initial Report of the DSDP54 (Rosendahl, B. R. and Hekinian, R., eds.), 755-71. U.S. Govt. Printing Office, Washington, D.C. Google Scholar
Mellini, M., Carbonin, S., Dal Negro, A., and Piccirillo, E. M. (1988) Theoleiitic hypabyssal dykes: How many clinopyroxenes? Lithos, 22, 127–34.CrossRefGoogle Scholar
Morimoto, N., Fabries, J., Ferguson, A. K., Ginzburg, I. V., Ross, M., Seifert, F. A., Zussman, J., Aoki, K., and Gottardi, G. (1988) Nomenclature of pyr-oxenes. Mineral. Mag., 52, 535–50.CrossRefGoogle Scholar
Morris, P. A. (1988) Volcanic arc reconstruction using discriminant function analyses of detrital clinopyroxenes and amphiboles from the New England Fold Belt, Eastern Australia. Geoi, 96, 299311.Google Scholar
Mueller, R. F. and Saxena, S. K. (1977) Chemical Petrology, Springer-Verlag, New York, 394 pp.CrossRefGoogle Scholar
Myers, C. W., Bence, A. E., Papike, J. J., and Ayuso, R. A. (1975) Petrology of an alkali-olivine basalt sill from site 169 of DSDP Leg 17: the Central Pacific Basin. J. Geophys. Res., 80, 807–22.CrossRefGoogle Scholar
Nabelek, P. I., Lindsley, D. H., and Bohlen, S. R. (1987) Experimental examination of two-pyroxene graphical thermometers using natural pyroxenes with application to meta-igneous pyroxenes from the Adirondack Mountains, New York. Con-trib. Mineral. Petrol, 97, 6671.CrossRefGoogle Scholar
Nakamura, Y. and Coombs, D. S. (1973) Clinopyrox-enes in the Tawhiroko tholeitic dolerite at Moeraki, north-eastern Otago, New Zealand. Ibid. 42, 213-28.Google Scholar
Nash, W. P. and Wilkinson, J. F. G. (1970) Shonkin Sag Laccolith, Montana. I. Mafic minerals and estimates of temperature, pressure, oxygen fugacity and silica activity. Ibid. 25, 241-69.Google Scholar
Nisbet, E. G. and Pearce, J. A. (1977) Clinopyroxene composition in mafic lavas from different tectonic settings. Ibid. 63, 149-60.CrossRefGoogle Scholar
Onuma, K. (1983) Effect of oxygen fugacity on fassaitic pyroxene. J. Fac. Sci. Hokkaido Univ., Ser. iv, 20, 185–94.Google Scholar
Otten, M. T. and Buseck, P. R. (1987) TEM study of the transformation of augite to sodic pyroxene in ecologitised ferrogabbro. Contrib. Mineral. Petrol, 96, 529–38.CrossRefGoogle Scholar
Papike, J. J. (1980) Pyroxene mineralogy of the Moon and Meteorites. In Pyroxenes (Prewitt, C. T., ed.), pp. 495-525. Mineral. Soc. of Am. Reviews in Mineralogy, 1. CrossRefGoogle Scholar
Papike, J. J. Cameron, K. L., and Baldwin, K. (1974) Amphi boles and pyroxenes: characterisation of other than quadrilateral components and estimates of ferric iron from microprobe data. Geol. Soc. Amer. Abstr. with Programs, 6, 1053–4.Google Scholar
Perfit, M. R. and Fornari, D. J. (1983) Geochemical studies of abyssal lavas recovered by DSRV Alvin from Eastern Galapagos Rift, Inca transform and Ecuador Rift 2. Phase chemistry and crystallisation history. Geophys. Res., 88, 10530–50.CrossRefGoogle Scholar
Presnall, D. C. and Hoover, J. D. (1984) Composition and depth of origin of primary mid-ocean ridge basalts. Contrib. Mineral. Petrol., 87, 170–8.CrossRefGoogle Scholar
Schweitzer, E. L., Papike, J. J., and Bence, A. E. (1979) Statistical analysis of clinopyroxenes from deep-sea basalts. Am. Mineral., 64, 501–13.Google Scholar
Scott, P. W. (1976) Crystallisation trends of pyroxenes from the alkaline volcanic rocks of Tenerife, Canary Islands. Mineral. Mag., 40, 805–16.CrossRefGoogle Scholar
Sen, G. (1986) Mineralogy and petrogenesis of the Deccan Trap lava flows around Mahabaleshwar, India. Petrol, 27, 627–63.CrossRefGoogle Scholar
Shimizu, N. and leRoex, A. P. (1986) The chemical zoning of augite phenocrysts in alkaline basalts from Gaough Island, South Atlantic. Volcanol. Geotherm. Res., 29, 159–88.CrossRefGoogle Scholar
Smith, D. and Lindsley, D. H. (1971) Chemical variations in pyroxene and olivine from Picture Gorge basalt. Yearb. Carnegie Instn. Wash., 69, 269–74.Google Scholar
Thompson, R. N. and Humphris, S. E. (1980) Silicate mineralogy of basalts from the East Pacific Rise, OCP Ridge, and Siqueiros Fracture Zone: Deep Sea Drilling Project Leg 54, In Initial Reports of the DSDP54 (Rosendahl, B. R. and Hekinian, R., eds.), pp. 651-69. U.S. Govt. Printing Office, Washington, D.C. Google Scholar
Tracey, R. J. and Robinson, P. (1977) Zoned titanium augite in alkali olivine basalt from Tahiti and the nature of titanium substitutions in augite. Am. Mineral, 62, 634–45.Google Scholar
Vallance, T. G. (1969) Recognition of specific magma-tic character in some Palaeozoic mafic lavas in New South Wales. Proc. Specialists Symposia (Canberra, 1968). Geol. Soc. Aust., Spec. Pub. 2, 163-7.Google Scholar
Vallance, T. G. (1974a) Spilite degradation of a tholeiitic basalt. J. Petrol, 15, 7996.CrossRefGoogle Scholar
Vallance, T. G. (1974b) Pyroxenes and the Basalt-Spilite Rela tion. In Spilites and Spilitk Rocks (Amstutz, C. G., ed.), pp. 5968. Springer-Verlag, Berlin.CrossRefGoogle Scholar
Verhoogen, J. (1962) Distribution of titanium between silicates and oxides in igneous rocks. Am. J. Sci., 260, 211–20.CrossRefGoogle Scholar
Vieten, K. (1979) The minerals of the volcanic rock association of the Siebengebirge. I. Clinopyroxenes I. Variation of chemical composition of Ca-rich clinopyroxenes (salites) in dependence of the degree of magma differentiation. Neues. Jahrb. Mineral, Abh., 135, 270–86.Google Scholar
Wass, S. Y. (1979) Multiple origins of clinopyroxenes in alkalic basaltic rocks. Lithos, 12, 115–32.CrossRefGoogle Scholar
Wilkinson, J. F. G. (1956) Clinopyroxenes of alkali-basalt magma. Am. Mineral, 41, 724–43.Google Scholar
Wilkinson, J. F. G. (1957) The clinopyroxenes of a differentiated teschenite sill near Gunncdah, New South Wales. Geol. Mag., 94, 123–34.CrossRefGoogle Scholar
Wilkinson, J. F. G. (1966) Clinopyroxenes from the Square Top intru sion, Nundle, New South Wales. Mineral. Mag., 35, 1061–70.Google Scholar