Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-14T19:21:38.869Z Has data issue: false hasContentIssue false

Rinkite-(Y), Na2Ca4YTi(Si2O7)2OF3, a seidozerite-supergroup TS-block mineral from the Darai-Pioz alkaline massif, Tien-Shan mountains, Tajikistan: Description and crystal structure

Published online by Cambridge University Press:  29 June 2018

Leonid A. Pautov
Affiliation:
A.E. Fersman Mineralogical Museum, Russian Academy of Sciences, Leninskyi Prospekt 18-2, 119071 Moscow, Russia
Atali A. Agakhanov
Affiliation:
A.E. Fersman Mineralogical Museum, Russian Academy of Sciences, Leninskyi Prospekt 18-2, 119071 Moscow, Russia
Vladimir Yu. Karpenko
Affiliation:
A.E. Fersman Mineralogical Museum, Russian Academy of Sciences, Leninskyi Prospekt 18-2, 119071 Moscow, Russia
Yulia A. Uvarova
Affiliation:
CSIRO Mineral Resources, ARRC, 26 Dick Perry Avenue, Kensington WA 6151Australia
Elena Sokolova*
Affiliation:
Department of Geological Sciences, University of Manitoba, 125 Dysart Road, Winnipeg, MB, R3T 2N2Canada;
Frank C. Hawthorne
Affiliation:
Department of Geological Sciences, University of Manitoba, 125 Dysart Road, Winnipeg, MB, R3T 2N2Canada;
*
*Author for correspondence: Elena Sokolova, Email: elena.sokolova@umanitoba.ca

Abstract

Rinkite-(Y), ideally Na2Ca4YTi(Si2O7)2OF3, is a new rinkite-group (seidozerite-supergroup) TS-block mineral from the Darai-Pioz alkaline massif, Tian-Shan mountains, Tajikistan. The mineral is of hydrothermal origin. It occurs as aggregates (up to 1.5 cm long) of acicular crystals 0.1–1.0 mm thick, and as separate elongated columnar, flattened-prismatic crystals up to 1 cm long with rectangular or rhombic sections up to 0.5 mm across. Associated minerals are quartz, aegirine, microcline, neptunite, pectolite, calcite, eudialyte-group minerals, fluorite, titanite, turkestanite, kupletskite, galena, albite and pyrochlore-group minerals. Crystals are transparent and colourless to occasionally white, with a vitreous lustre. Rinkite-(Y) has a white streak, uneven, conchoidal fracture and does not fluoresce under a cathode or ultraviolet light. Cleavage is very good on {100}, no parting was observed, Mohs hardness is ~5, and it is brittle, Dmeas. = 3.44(2) g/cm3, Dcalc. = 3.475 g/cm3. It is biaxial (+) with refractive indices (λ = 590 nm) α = 1.662(2), β = 1.666(2), γ = 1.685(5); 2Vmeas. = 50(3) and 2Vcalc. = 49.7°. It is nonpleochroic. Rinkite-(Y) is monoclinic, space group P21/c, a = 7.3934(5), b = 5.6347(4), c = 18.713(1) Å, β = 101.415(2)° and V = 764.2(2) Å3. The six strongest reflections in the X-ray powder diffraction data [d(Å), I, (hkl)] are: 3.057, 100, (006, $\bar{2}$12, 210); 2.688, 28, (016); 9.18, 24, (002); 2.929, 17, ($\bar{2}$13, 211); 3.559, 15, (104, 014) and 2.783, 14, (021). The empirical formula calculated on 18 (O + F) is Na2.11(Ca3.74Sr0.03Mn0.03)Σ3.80(Y0.50Nd0.16Ce0.16Gd0.07Dy0.06Sm0.05Pr0.03La0.03${\rm U}_{0.01}^{{\rm 4 + }} {\rm )}_{\Sigma 1.07}{\rm (T}{\rm i}_{0.85}{\rm N}{\rm b}_{0.17}{\rm W}^{6+}_{0.01}{\rm T}{\rm a}_{0.01}{\rm )}_{\Sigma 1.04}\left( {{\rm S}{\rm i}_{4.03}{\rm O}_{14}} \right){\rm O}_{1.40}{\rm F}_{2.60}$ with Z = 2. The ideal formula is Na2Ca4YTi(Si2O7)2OF3. The crystal structure was refined on a twinned crystal to R1 = 4.59% on the basis of 1489 unique reflections (F > 4σF) and is a framework of TS (Titanium-Silicate) blocks. The TS block consists of HOH sheets (H – heteropolyhedral, O – octahedral) parallel to (100). In the O sheet, the Ti-dominant [6]MO1 site ideally gives 1 Ti apfu. The [8]MO2 and [6]MO3 sites are ideally occupied by Na and (NaCa) apfu. In the H sheet, the [7]MH site is occupied by Ca1.13Y0.50REE0.37, (REE = rare-earth element), ideally (CaY), <MH–φ> = 2.415 Å and the [7]AP site is occupied by Ca1.81REE0.19, ideally Ca2, <AP–φ> = 2.458 Å. The MH + AP sites ideally give (Ca3Y) apfu. The MH and AP polyhedra and Si2O7 groups constitute the H sheet. Linkage of H and O sheets via common vertices of MH and AP polyhedra and Si2O7 groups with MO1–3 polyhedra results in a TS block. The TS block in rinkite-(Y) exhibits linkage 1 and stereochemistry typical for the rinkite group (Ti = 1 apfu) of the seidozerite supergroup. For rinkite-(Y), the ideal structural formula of the form AP2MH2MO4(Si2O7)2$ \left( {{\rm X}_{\rm M}^{\rm O} } \right)_2\left( {{\rm X}_{\rm A}^{\rm O} } \right)_2{\rm is }\;\left( {{\rm C}{\rm a}_3{\rm Y}} \right){\rm Na}\left( {{\rm NaCa}} \right){\rm Ti}\left( {{\rm S}{\rm i}_2{\rm O}_7} \right)_2\left( {{\rm OF}} \right){\rm F}_2 $ with Z = 2. The mineral is named rinkite-(Y) as it is structurally identical to rinkite-(Ce) and Y is the dominant rare-earth element.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Ian Graham

References

Anthony, J.W., Bideaux, R.A., Bladh, K.W. and Nichols, M.C. (1995) Handbook of Mineralogy. II. Silica, Silicates. Part 2. Mineral Data Publishing, Tucson, p. 689.Google Scholar
Bayliss, P. and Levinson, A.A. (1988) A system of nomenclature for rare-earth mineral species: Revision and extension. American Mineralogist, 73, 422423.Google Scholar
Belakovskiy, D.I. (1991) Die seltenen Mineralien von Dara-i-Pioz im Hochgebirge Tadshikistans. Lapis, 16, 4248.Google Scholar
Bellezza, M., Franzini, M., Larsen, A.O., Merlino, S. and Perchiazzi, N. (2004) Grenmarite, a new member of the götzenite-seidozerite-rosenbuschite group from the Langesundsfjord district, Norway: definition and crystal structure. European Journal of Mineralogy, 16, 971978.Google Scholar
Blumrich, J. (1893) Die Phonolithe des Friedländer Bexirkes in Nordböhmen. Tschermaks Mineralogische und Petrographische Mitteilungen, 13, 465495.Google Scholar
Brögger, W.C. (1887) Forelöbig meddelelse om mineralerne på de sydnorske augit- og nefelinsyeniters grovkornige gange. Geologiska Föreningens i Stockholm Förhandlingar, 109, 247274.Google Scholar
Brögger, W.C. (1890) Die miniralien der syenitpegmatitgänge der südnorwegischen augit und nephelinsyenite. Zeitschrift für Kristallographie und Mineralogie, 16, 7494.Google Scholar
Brown, I.D. (1981) The bond-valence method: an empirical approach to chemical structure and bonding. Pp. 130 in: Structure and Bonding in Crystals II (O'Keeffe, M. and Navrotsky, A., editors). Academic Press, New York.Google Scholar
Cámara, F., Sokolova, E. and Hawthorne, F.C. (2011) From structure topology to chemical composition. XII. Titanium silicates: the crystal chemistry of rinkite, Na2Ca4REETi(Si2O7)2OF3. Mineralogical Magazine, 75, 27552774.Google Scholar
Cámara, F., Sokolova, E., Abdu, Y.A., Hawthorne, F.C., Charrier, T., Dorcet, V. and Carpentier, J.-F. (2017) Fogoite-(Y), Na3Ca2Y2Ti(Si2O7)2OF3, a Group-I TS-block mineral from the Lagoa do Fogo, the Fogo volcano, the São Miguel Island, the Azores: description and crystal structure. Mineralogical Magazine, 81, 383–342.Google Scholar
Chakrabarty, A., Mitchell, R.H., Ren, M., Sen, A.K. and Pluseth, K.L. (2013) Rinkite, cerianite-(Ce) and hingganite-(Ce) in syenite gneisses from the Sushina Hill Complex, India: occurrence, compositional data and petrogenetic significance. Mineralogical Magazine, 77, 31373153.Google Scholar
Christiansen, C.C., Johnsen, O. and Makovicky, E. (2003 a) Crystal chemistry of the rosenbuschite group. The Canadian Mineralogist, 41, 12031224.Google Scholar
Christiansen, C.C., Gault, R.A., Grice, J.D. and Johnsen, O. (2003 b) Kochite, a new member of the rosenbuschite group from the Werner Bjerge alkaline complex, East Greenland. European Journal of Mineralogy, 15, 551554.Google Scholar
Dusmatov, V.D. (1968) On mineralogy of one alkaline massif. Pp. 134135 in: Alkaline Rocks of Kirgizia and Kazakhstan, Ilym, Frunze [in Russian].Google Scholar
Dusmatov, V.D. (1971) Mineralogy of the Darai-Pioz Alkaline Massif (Southern Tien-Shan). PhD dissertation, Institute of Mineralogy, Geochemistry and Crystal Chemistry of Rare Elements, Moscow, 171 p. [in Russian].Google Scholar
Faiziev, A.R., Gafurov, F.G. and Sharipov, B.N. (2010) Carbonatites of the Darai-Pioz alkaline massif, Central Tadjikistan, and their compositional features. Geochemistry International, 48, 10841096.Google Scholar
Galli, E. and Alberti, A. (1971) The crystal structure of rinkite. Acta Crystallographica, B27, 12771284.Google Scholar
Kheirov, M.B., Mamedov, Kh.S. and Belov, N.V. (1963) Crystal structure of rinkite, Na(Ca,Ce)2(Ti,Ce)O(Si2O7)F. Doklady Akademii Nauk SSSR, 150, 162164.Google Scholar
Lorenzen, J. (1884) Untersuchung einiger Mineralien aus Kangerdluarsuk in Grönland. Zeitschrift für Kristallographie, 9, 243254.Google Scholar
Lyalina, L., Zolotarev, A. Jr., Selivanova, E., Savchenko, E., Zozulya, D., Krivovichev, S. and Mikhailova, Yu. (2015) Structural characterization and composition of Y-rich hainite from Sakharjok nepheline syenite pegmatite (Kola Peninsula, Russia). Mineralogy and Petrology, 109, 443451.Google Scholar
Lyalina, L.M., Zolotarev, A.A. Jr., Selivanova, E.A., Savchenko, Ye.E., Krivovichev, S.V., Mikhailova, Yu.A., Kadyrova, G.I. and Zozulya, D.R. (2016) Batievaite-(Y), Y2Ca2Ti[Si2O7]2(OH)2(H2O)4, a new mineral from nepheline syenite pegmatite in the Sakharjok massif, Kola Peninsula, Russia. Mineralogy and Petrology, 110, 895904.Google Scholar
Mandarino, J.A. (1981) The Gladstone-Dale relationship. IV. The compatibility index and its application. The Canadian Mineralogist, 19, 441450.Google Scholar
Mineev, D.A. (1969) Lantanoides in minerals. Nedra, Moscow, 184 pp. [in Russian].Google Scholar
Moskvin, A.V. (1937) Geography and Geology of East Karategin. Pp. 682739 in: Tajik-Pamir Expedition of 1935. Academy of Sciences of USSR, Moscow–Leningrad [in Russian].Google Scholar
Pautov, L.A., Agakhanov, A.A., Karpenko, V.Y., Uvarova, Y.A., Sokolova, E. and Hawthorne, F.C. (2017) Rinkite-(Y), IMA 2017-043. CNMNC Newsletter No. 39, October 2017, page 1280; Mineralogical Magazine, 81, 12791286.Google Scholar
Petersen, O.V., Rønsbo, J.G. and Leonardsen, E.S. (1989) Nacareniobsite-(Ce), a new mineral species from the Ilímaussaq alkaline complex, South Greenland, and its relation to mosandrite and the rinkite series. Neues Jahrbuch für Mineralogie – Monatshefte, No. 2, 8496.Google Scholar
Pouchou, J.L. and Pichoir, F. (1985) “PAP” (φ(ρz)) procedure for improved quantitative microanalysis. Pp. 104106 in: Microbeam Analysis (Armstrong, J.T., editor). San Francisco Press, San Francisco, California, USA.Google Scholar
Rastsvetaeva, R.K, Borutskii, B.E. and Shlyukova, Z.V. (1991) Crystal structure of Hibbing (Khibinian) rinkite. Soviet Physics Crystallography, 36, 349351.Google Scholar
Reguir, E.P., Chakhmouradian, A.R. and Evdokimov, M.D. (1999) The mineralogy of a unique baratovite- and miserite-bearing quartz – albite – aegirine rock from the Dara-i-Pioz complex, northern Tajikistan. The Canadian Mineralogist, 37, 13691384.Google Scholar
Rønsbo, J.G., Sørensen, H., Roda-Robles, E., Fontan, F. and Monchoux, P. (2014) Rinkite–nacareniobsite-(Ce) solid solution series and hainite from the Ilímaussaq alkaline complex: occurrence and compositional variation. Bulletin of the Geological Society of Denmark, 62, 115.Google Scholar
Sahama, Th.G. and Hytönen, M.A. (1957) Gotzenite and combeite, two new silicates from the Belgian Congo. Mineralogical Magazine, 31, 503510.Google Scholar
Semenov, E.I. (1963) Mineralogy of Rare Earths. Pp. 186190. Academy of Sciences of USSR, Moscow [in Russian].Google Scholar
Semenov, E.I. and Dusmatov, V.D. (1975) On mineralogy of the Darai-Pioz alkaline massif (Central Tajikistan). Doklady Akademii nauk Tadzhikskoi SSR, XVIII, 3941 [in Russian].Google Scholar
Semenov, E.I., Kazakova, M.E. and Simonov, V.I. (1958) A new zircon mineral seidoserite and other minerals of the wohlerite group in alkaline pegmatites. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 87, 590597 [in Russian].Google Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A32, 751767.Google Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112122.Google Scholar
Sheldrick, G.M. (2015) Crystal structure refinement with SHELXL. Acta Crystallographica, C71, 38.Google Scholar
Simonov, V.I. and Belov, N.V. (1968) Characteristics of the crystal structure of rinkite. Soviet Physics Crystallography, 12, 740744.Google Scholar
Slepnev, Yu.S. (1957) On the minerals of the rinkite group. Izvestiya Akademii Nauk SSSR, Seriya Geologicheskaya, N3, 63–75 [in Russian].Google Scholar
Sokolova, E. (2006) From structure topology to chemical composition. I. Structural hierarchy and stereochemistry in titanium disilicate minerals. The Canadian Mineralogist, 44, 12731330.Google Scholar
Sokolova, E. and Cámara, F. (2008) From structure topology to chemical composition. VIII. Titanium silicates: the crystal structure and crystal chemistry of mosandrite from type locality of Låven (Skådön), Langesundsfjorden, Larvik, Vestfold, Norway. Mineralogical Magazine, 72, 887897.Google Scholar
Sokolova, E. and Cámara, F. (2013) From structure topology to chemical composition. XVI. New developments in the crystal chemistry and prediction of new structure topologies for titanium disilicate minerals with the TS block. The Canadian Mineralogist, 51, 861891.Google Scholar
Sokolova, E. and Cámara, F. (2017) The seidozerite supergroup of TS-block minerals: nomenclature and classification, with change of the following names: rinkite to rinkite-(Ce), mosandrite to mosandrite-(Ce), hainite to hainite-(Y) and innelite-1T to innelite-1A. Mineralogical Magazine, 81, 14571484.Google Scholar
Sokolova, E. and Hawthorne, F.C. (2008) From structure topology to chemical composition. V. Titanium silicates: crystal chemistry of nacareniobsite-(Ce). The Canadian Mineralogist, 46, 13331342.Google Scholar
Sokolova, E. and Hawthorne, F.C. (2013) From structure topology to chemical composition. XIV. Titanium silicates: refinement of the crystal structure and revision of the chemical formula of mosandrite, (Ca3REE)[(H2O)2Ca0.50.5]Ti(Si2O7)2(OH)2(H2O)2, a Group-I mineral from the Saga mine, Morje, Porsgrunn, Norway. Mineralogical Magazine, 77, 27532771.Google Scholar
Tê-yü, L., Simonov, V.I. and Belov, N.I. (1965) Crystal structure of rinkite Na(Na,Ca)2(Ca,Ce)4 (Ti,Nb)[Si2O7]2(O,F)2F2. Soviet Physics Doklady, 10, 496498.Google Scholar
Wilson, A.J.C. (editor) (1992) International Tables for Crystallography. Volume C: Mathematical, Physical and Chemical tables. Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
Supplementary material: File

Pautov et al. supplementary material 1

Pautov et al. supplementary material

Download Pautov et al. supplementary material 1(File)
File 89.3 KB