Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T09:41:33.710Z Has data issue: false hasContentIssue false

Sb-rich rutile in the manganese concentrations at St. Marcel-Praborna, Aosta Valley, Italy: petrology and crystal-chemistry

Published online by Cambridge University Press:  05 July 2018

David C. Smith
Affiliation:
Laboratoire de Minéralogie, Muséum National d'Histoire Naturelle, 61 Rue Buffon, 75005 Paris, France
Elena-Adriana Perseil
Affiliation:
Laboratoire de Minéralogie, Muséum National d'Histoire Naturelle, 61 Rue Buffon, 75005 Paris, France CNRS, Unité de Recherche Associée n° 736, 61 Rue Buffon, 75005 Paris, France

Abstract

The petrographical, crystal-chemical and petrogenetical aspects of rutile rich in antimony (up to 33.75 wt.% Sb2O5; equal to 0.2 Sb5+ per O = 2) from St. Marcel-Praborna in the Aosta Valley, Italy, were re-examined. These compositions occur in two different petrographical environments (within the rock matrix or as microinclusions within Sb-rich titanite) in the manganese concentrations at this locality. The new data confirm our earlier hypothesis that two distinct petrogenetical/crystal-chemical processes both occurred: 1. Sb-metasomatism of pre-existing Sb-free rutile inclusions; and 2. creation of neoblastic Sb-rich rutile by the expulsion of Ti from pre-existing Sb-free titanite being metasomatized by Sb to form Sb-rich titanite. In the literature, Sb in minerals is variably considered as being trivalent and/or pentavalent. This work demonstrates that within rutile it is entirely Sb5+, substituting for Ti4+ by the following heterovalent cation exchange mechanism which is also the dominant one in the host Sb-rich titanite: 2 viR4+ = viR3+ + viR5+, where viR3+ = (Al,Cr,Mn,Fe)3+. A near-perfect correlation of ΣR5+vs. ΣR3+ (r > 0.98) is perturbed only by the presence of trace amounts of Ca2+, Sr2+ and Ba2+. Traces of Mn4+, Si4+ and/or (OH) might also be present. These alkaline earth cations are the largest cations ever recorded in the rutile structure and are seemingly too large to occupy normal octahedral sites. The cation exchange mechanism involved might be that found in the ‘trirutile’ mineral group: 3 viR4+ = viR2+ + 2 viR5+. Alternatively these large divalent cations may be situated in the lozenge-shaped tunnels of the rutile structure, by analogy with other large cations occupying the wider subrectangular tunnels in the analogous cryptomelane/hollandite/priderite, romanéchite and todorokite mineral groups. This leads to a possible new cation exchange mechanism for the rutile structure: 2 viR4+ + tunelvacant = 2 viR3+ + tunnelR2+.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bloss, F.D. (1994) Crystallography and Crystal-chemistry. Mineral. Soc. Amer., Washington, 545 PP.Google Scholar
Clark, A.M. and Fejer, E.E. (1978) Tapiolite, its chemistry and cell dimensions. Mineral. Mag., 42, 477-8.CrossRefGoogle Scholar
Deer, W.A., Howie, R.A. and Zussman, J. (1992) An Introduction to the Rock-Forming Minerals. Longman Scientific and Technical, Harlow, Essex U.K., 696 pp.Google Scholar
El Goresy, A. (1976a) Oxide minerals in lunar rocks. Chap. 5, p. EG1—EG46. In Reviews in Mineralogy, Mineral. Soc. Amer., 3, Oxide Minerals, (ed.) D. Rumble III.CrossRefGoogle Scholar
El Goresy, A. (1976b) Oxide minerals in meteorites. Chap. 6, p. EG47—EG72. In Reviews in Mineral. Soc. Amer., 3, Oxide Minerals, (ed.) D. Rumble III.CrossRefGoogle Scholar
Fleischer, M. and Mandarino, J.A., (1995) Glossary of mineral species 1995. The Mineral Record, Tucson, Arizona 280 pp.Google Scholar
Foord, E.E., Hlava, P.F., Fitzpatrick, J.J., Erd, R.C. and Hinton, R.W. (1991) Maxwellite and squawcreekite, two new minerals from the Black Range tin district, Catron County, New Mexico, U.S.A.. Neues Jahrb. Mineral. Monat., 363—84.Google Scholar
Frost, B.R. (1991) Stability of oxide minerals in metamorphic rocks. Chap. 13, p. 469-487. In Reviews in Mineralogy, Mineral. Soc. Amer., 25, Oxide Minerals: petrologic and magnetic significance, (ed.) D.H. Lindsley.CrossRefGoogle Scholar
Graham, J. and Morris, R.C. (1973) Tungsten- and antimony-substituted rutile. Mineral. Mag., 39, 470-3.CrossRefGoogle Scholar
Haggerty, S.E. (1991) Oxide mineralogy of the upper mantle. Chap. 10, p. 355—416. In Reviews in Mineralogy, Mineral. Soc. Amer., 25, Oxide Minerals: petrologic and magnetic significance, (ed.) D.H. Lindsley.CrossRefGoogle Scholar
Heslop, R.B. and Robinson, P.L. (1963) Inorganic Chemistry: a Guide to Advanced Study. Elsevier, Amsterdam, 591 pp.Google Scholar
Lasnier, B., Poirot, J.-P. and Smith, D.C. (1992) Intercroissances de jadéite de différentes composi-tions dans des jades révélées par cathodolumines-cence. Revue de Gemmologie, A.F.G., Paris, 113, 811.Google Scholar
Lindsley, D.H. (1991) Experimental studies of oxide minerals. Chap. 3, p. 69—106. In Reviews in Mineralogy, Mineral. Soc. Amer., 25, Oxide Minerals: petrologic and magnetic significance, (ed.) D.H. Lindsley.CrossRefGoogle Scholar
Martin, S. and Kienast, J.-R. (1987) The HP-LT manganiferous quartzites of Praborna, Piemonte ophiolite nappe, Italian Western Alps. Sehweiz. Mineral. Petrogr. Mitt., 67, 339-60.Google Scholar
Moore, P.B. (1968) Substitutions of the type (Sb0.5 5+Fe0.5 3+) = (Ti4+): the crystal structure of melanostibite. Amer. Mineral., 53, 1104-9.Google Scholar
Morgan, B.A. (1975) Mineralogy and origin of skarns in the Mount Morrison Pendant, Sierra Nevada, California. Amer. J. Sci., 275, 119–42.CrossRefGoogle Scholar
Mottana, A. (1986) Blueschist-facies metamorphism of manganiferous cherts: A review of the alpine occurrences. Geol. Soc. Amer. Memoir, 164, 267-99.CrossRefGoogle Scholar
Oberti, R., Smith, D.C., Rossi, G. and Caucia, F. (1991) The crystal-chemistry of high-aluminium titanites. European J. Mineral., 3, 777-92.CrossRefGoogle Scholar
Parent, C. and Roger, G. (1968) Le gîte antimonifère de Buzeins (Aveyron). Un exemple de minéralisation épigénétique ‘familière’ darts l'Autunien. Source de la minéralisation et rôle de la matière organique. Bull. B.R.G.M., 2 e série, sect. H, 4, 141.Google Scholar
Pascal, P. (1958) Nouveau Traité de Chimie Minérale: Tome XI: arsenic - antimoine - bismuth. Masson, Paris.Google Scholar
Perseil, E.-A. (1985) Quelques caractéristiques des faciès à oxydes de manganèse darts le gisement de St. Marcel-Praborna (Val d'Aoste, Italie). Mineral. Deposita, 20, 271-6.CrossRefGoogle Scholar
Perseil, E.-A. (1987) Particularités des piémontites de Saint-Marcel-Praborna (Italie): Spectres I.R. Actes du l12e Congrès National Sociétés Savantes, Lyon, Section Sciences, Fast. I, 209-15.Google Scholar
Perseil, E.-A. (1988) La présence du strontium dans les oxydes manganésifères du gisement de St. Marcel-Praborna (Val d'Aoste, Italie). Mineral. Deposita, 23, 306-8.CrossRefGoogle Scholar
Perseil, E.-A. (1991) La présence de Sb-rutile dans les concentrations manganésifères de St. Marcel-Praborna (Val d'Aoste, Italie). Schweiz. Mineral. Petrog. Mitt., 71, 341-7.Google Scholar
Perseil, E.-A. and Grandin, G. (1978) Evolution minéralogique du manganèse dans trois gisements d'Afrique de l'Ouest: Mokta, Tambao, Nsuta. Mineral. Deposita, 13, 295-311.CrossRefGoogle Scholar
Perseil, E.-A. and Smith, D.C. (1995) Sb-rich titanite in the manganese concentrations at St. Marcel-Praborna, Aosta Valley, Italy: petrography and crystal-chemistry. Mineral. Mag., 59, 717—34.CrossRefGoogle Scholar
Perseil, E.-A. and Smith, D.C. (1996) Cristallochimie de l'arsenic dans la fluorapatite et la titanite des concentrations manganésifères de St, Marcel-Praborna, V. Aoste (Italie). Réunion biennale française RST, Orléans, Résumés, 167.Google Scholar
Perseil, E.-A., Blanc, P. and Smith, D.C. (1996) Modification of the luminescence of fluorapatite: replacement of phosphorus by arsenic in the fluorapatites of the manganese concentrations at St. Marcel, Aosta, Italy. Internat. Conf. Cathodoluminescence, Nancy, France, Abstracts, 111-2.Google Scholar
Pinet, M. and Smith, D.C. (1985) Petrochemistry of opaque minerals in eclogites from the Western Gneiss Region, Norway. 1. Petrology of the oxide microassemblages. Chem. Geol., 50, 225—49.CrossRefGoogle Scholar
Putnis, A. (1978) The mechanism of exsolution of hematite from iron-bearing rntile. Phys. Chem. Mineral., 3, 183-97.CrossRefGoogle Scholar
Roger, G. (1972) Un type de minéralisations épigénétiques familiéres: les filons à antimoine du Massif Central franqais. Hypothèse de la sécrétion latérale. Mineral. Deposita, 7, 360-82.CrossRefGoogle Scholar
Rossman, G.R. and Smyth, J. (1990) Hydroxyl contents of accessory minerals in mantle eclogites and related rocks. Amer. Mineral., 75, 775-80.Google Scholar
Rumble III, D. (1976) Oxide minerals in metamorphic rocks. Chap. 3, p. R1—R24. In Reviews in Mineralogy, Mineral. Soc. Amer., 3, Oxide Minerals, (ed.) D. Rumble III.CrossRefGoogle Scholar
Schmidbauer, E. and Lebküchner-Neugebauer, J. (1987) 57Fe Mössbauer study on compositions of the series FeTaO4 - Fe2+Ta2O6 . Phys. Chem. Minerals, 15, 196200.CrossRefGoogle Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr., A32, 751—67.CrossRefGoogle Scholar
Smith, D.C. (1988) A review of the peculiar mineralogy of the ‘Norwegian Coesite-Eclogite Province’, with crystal-chemical, petrological, geochemical and geodynamical notes and an extensive bibliography. In Eclogites and Eclogite-Facies Rocks, (Smith, D.C., ed.), Developments in Petrology, 12, 1—206. Elsevier, Amsterdam, 524 pp.Google Scholar
Smith, D.C. and Perseil, E.-A. (1996) Cristallochimie de l'antimoine dans la titanite, le rutile et la roméite des concentrations manganésifères de St. Marcel-Praborna, V. Aoste (Italie). Réunion biennale française RST, Orléans, Résumés, 168.Google Scholar
Smith, D.C. and Pinet, M. (1985) Petrochemistry of opaque minerals in eclogites from the Western Gneiss Region, Norway. 2. Chemistry of the ilmenite mineral group. Chem. Geol., 50, 251—66.CrossRefGoogle Scholar
Turnock, A.C. (1965) Fe—Ta oxides: phase relations at 1200°C. J. Amer. Ceram. Soc., 48, 258-61.CrossRefGoogle Scholar
Waychunas, G.A. (1991) Crystal-chemistry of oxides and oxyhydroxides. Chap. 2, p. 11 —68. In Reviews in Mineralogy, Mineral. Soc. Amer., 25, Oxide Minerals: petrologic and magnetic significance, (ed.) D.H. Lindsley.CrossRefGoogle Scholar
Yardley, B., Rochelle, C.A., Barnicoat, A.C. and Lloyd, G.E. (1991) Oscillatory zoning in metamorphic minerals: an indicator of infiltration metasomatism. Mineral. Mag., 55, 357-65.CrossRefGoogle Scholar