Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-13T01:34:56.177Z Has data issue: false hasContentIssue false

Silicic Magmas Derived by Fractional Crystallization from Miocene Minette, Elkhead Mountains, Colorado

Published online by Cambridge University Press:  05 July 2018

P. T. Leat
Affiliation:
Department of Geology, Imperial College of Science and Technology, London SW7 2BP, U.K.
R. N. Thompson
Affiliation:
Department of Geology, Imperial College of Science and Technology, London SW7 2BP, U.K.
M. A. Morrison
Affiliation:
Department of Geological Sciences, University of Birmingham, P.O. Box 363, Birmingham B15 2TT
G. L. Hendry
Affiliation:
Department of Geological Sciences, University of Birmingham, P.O. Box 363, Birmingham B15 2TT
A. P. Dickin
Affiliation:
Department of Geology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L85 4M1

Abstract

The rock association of minette with silicic lavas and intrusions (granites, syenites, dacites) is a common geologic feature in both collisional and extensional tectonic settings. Considerable doubt exists as to whether a genetic link exists between these mafic and silicic rocks. We describe a Miocene sill from NW Colorado which is a clear example of a mixed magma consisting of originally-liquid inclusions of minette in a silicic trachydacite host. Chemical and Sr, Nd and Pb isotopic data are consistent with derivation of the silicic host magma of the sill dominantly by fractional crystallization of the minette magma. Correlations between the elemental compositions of the rock types and their Sr and Nd isotopic ratios imply minor assimilation of continental crust with relatively low values of both 87Sr/86Sr and 143Nd/144Nd, concomitantly with fractional crystallization. The parental minette magma was probably derived by partial melting of subcontinental lithospheric mantle. While the sill was emplaced in a rift-like tectonic setting, the chemical and isotopic composition of the lithosphere-derived minette magmas (and hence the silicic fractionates) was largely independent of this setting, but dependent upon the composition and age of the lithospheric mantle and crust.

Type
Petrology and Geochemistry
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Present Address: Department of Geological Sciences, University of Durham, South Road, Durham DH1 3LE, U.K.

References

Allen, J.F., and Carmichael, I.S.E. (1984) Contrib. Mineral. Petrol. 88, 203-16.CrossRefGoogle Scholar
Barker, F. (1981) J. Geophys. Res. 86, 101-31.5.Google Scholar
Buffler, R.T. (1967) Ph.D. thesis, University of California, Berkeley.Google Scholar
Cundari, A. (1979) Contrib. Mineral. Petrol. 70, 9-21.CrossRefGoogle Scholar
Dal Piaz, G.V., Venturelli, G., and Scolari, A. (1979) Mem. lnst. Geol. Mineral Universita di Padova, 32, 1-16.Google Scholar
Darbyshire, D.P.F., and Shepherd, T.J. (1985) J. Geol. Soc. London, I42, 1159-77.CrossRefGoogle Scholar
Divis, A.F. (1977) GeoL Soc. Am. Bull. 88, 96-100.2.0.CO;2>CrossRefGoogle Scholar
Doe, B.R., Leeman, W.P., Christiansen, R.L., and Hedge, C.E. (1982) J. Geophys. Res. 87, 478-58.6.Google Scholar
Dudas, F.O., Carlson, R.W., and Eggler, D.H. (1987) Geology, 15, 22-5.2.0.CO;2>CrossRef2.0.CO;2>Google Scholar
Duncker, K.E., Wolff, J.A., Harmon, R.S., Lear, P.T., Thompson, R.N., and Baldridge, W.S. (1987) Trans. Am. Geophys. Union, (Eos), 68, 153-2.Google Scholar
Dungan, M.A., Lindstrom, M.M., McMillan, N.J., Moorbath, S., Hoefs, J., and Haskin, L.A. (1986) J. Geophys. Res. 91, 5999-6028.CrossRefGoogle Scholar
Esperanca, S., and Holloway, J.R. (1987) Contrib. Mineral Petrol 95, 207-16.CrossRefGoogle Scholar
Frazer, K.J., Hawkesworth, C.J., Erlank, A.J., Mitchell, R.H., and Scott-Smith, B.H. (1985) Earth Planet. Sci. Lett. 76, 57-70.CrossRefGoogle Scholar
Halliday, A.N., Stephens, W.E., and Harmon, R.S. (1980) J. GeoL Soc. London, 137, 329-48.CrossRefGoogle Scholar
Hawkesworth, C.J., and Vollmer, R. (1979) Contrib. Mineral Petrol. 69, 151-65.CrossRefGoogle Scholar
Kay, S.M., Kay, R.W., Hangas, J., and Snedden, T. (1978) Geol. Soc. Am. Abst. with Prog. 3, 432.Google Scholar
Leat, P.T., Thompson, R.N., Morrison, M.A., Hendry, G.L., and Trayhorn, S.C. (1987a) Trans. R. Soc. Edinburgh: Earth Sci. 77, 349-60.CrossRefGoogle Scholar
Leat, P.T., Thompson, R.N., Morrison, M.A., Hendry, G.L., and Trayhorn, S.C. and Dickin, A.P. (1987b) Trans. Am. Geophys. Union, (Eos), 68, 153-0.Google Scholar
Leat, P.T., Thompson, R.N., Morrison, M.A., Hendry, G.L., and Trayhorn, S.C. and Dickin, A.P. (1988) In Oceanic and Continental Lithosphere: Similarities and Differences (Menzies, M. A. and Cox, K. G., eds.) Spec. Publ. J. Petrol, (in press).Google Scholar
Le Bas, M.J., Le Maitre, R.W., Streckeisen, A., and Zanettin, B. (1986) J. Petrol. 27, 745-50.CrossRefGoogle Scholar
Leeman, W.P., Menzies, M.A., Matty, D.J., and Embree, G.F. (1985) Earth Planet. Sci. Lett. 75, 354-68.CrossRefGoogle Scholar
Luedke, R.G., and Smith, R.L. (1978) U.S. Geol. Surv. Map 1-1091. B (1:1000000).Google Scholar
Macdonald, R., Rock, N.M.S., Rundle, C.C., and Russell, O.J. (1986) Mineral Mag. 50, 547-57.CrossRefGoogle Scholar
Mahood, G.A., (1984) J. Geophys. Res. 89, 584-05..Google Scholar
Menzies, M.A., Leeman, W.P., and Hawkesworth, C.J. (1983) Nature, 303, 205-9.CrossRefGoogle Scholar
Menzies, M.A., Leeman, W.P., and Hawkesworth, C.J. Halliday, A.N., Palacz, Z., Hunter, R.H., Upton, B.G.J., Aspen, P., and Hawkesworth, C.J. (1987) Ibid. 325, 4-4.7 .Google Scholar
Morrison, M.A., Hendry, G.L., and Lear, P.T., (1987) Trans. R. Soc. Edinburgh: Earth Sci. 77, 279-88.CrossRefGoogle Scholar
Peccerillo, A., and Taylor, S.R. (1976) Contrib. Mineral. Petrol. 58,6381.CrossRefGoogle Scholar
Rock, N.M.S. (1984) Trans. R. Soc. Edinburgh: Earth Sci. 74, 193-227.CrossRefGoogle Scholar
Rock, N.M.S. (1987) In Alkaline Igneous Rocks (J. G. Fitton and B. G. J. Upton, eds.) Spec. Publ. Geol. Soc. London, 30, 191-226.CrossRefGoogle Scholar
Gaskarth, S.W., and Rundle, C.C. (1986) J. Geol. 93, 505-22.Google Scholar
Thompson, R.N. (1982) Scott. J. Geol. 18, 50-107.Google Scholar
Thompson, R.N. and Fowler, M.B., (1986) Contrib. Mineral. Petrol. 94, 507-22.CrossRefGoogle Scholar
Thompson, R.N. Morrison, M.A., Hendry, G.L., and Parry, S.J. (1984) Phil. Trans. R. Soc. London, A310, 549-90.Google Scholar
Thorpe, R.S. (1987) Trans. R. Soc. Edinburgh: Earth Sci. 77, 361-6.CrossRefGoogle Scholar
Tweto, O. (1976) U.S. Geol. Surv. Map 1-972. (1: 250000, reprint 1981).Google Scholar
Tweto, O. (1979) In Rio Grande Rift: Tectonics andMagmatism (R. E. Rieker, ed.) Washington DC, Am. Geophys. Union, 335-6.Google Scholar
Van Bergen, M.J., Ghezzo, G., and Ricci, C.A. (1983) J. VolcanoL Geotherm. Res. 19, 135 .Google Scholar
Vollmer, R., Ogden, P., Schilling, J.-G., Kingsley, R.H., and Waggoner, D.G. (1984) Contrib. Mineral. Petrol. 87, 359-68.CrossRefGoogle Scholar
Williams, S. (1984) Ph.D. thesis, University of Minnesota, Minneapolis.Google Scholar