Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-26T04:49:38.788Z Has data issue: false hasContentIssue false

The Sitathali meteorite

Published online by Cambridge University Press:  05 July 2018

T. V. Viswanathan
Affiliation:
Geological Survey of India, a Calcutta-13
N. R. Sen Gupta
Affiliation:
Geological Survey of India, a Calcutta-13
D. R. Das Gupta
Affiliation:
Geological Survey of India, a Calcutta-13
S. Banerjee
Affiliation:
Geological Survey of India, a Calcutta-13

Summary

Sitathali is an olivine-bronzite chondrite, consisting largely of olivine (Fa18) and orthopyroxene (Fs19) with minor amounts of a clinopyroxene (Ca36Fe12Mg52), plagioclase (An12), nickel-iron, troilite, chromite, and a phosphate (apatite or merrillite). The chemical analysis of a 4 gm sample gave SiO2 39·85, TiO2 0·10, Al2O3 2·84, Cr2O3 0·35, FeO 13·27, MnO 0·28, MgO 23·01, CaO 1·84, Na2O 0·65, K2O 0·15, H2O+ 0·23, H2O− 0·05, P2O5 0·25, FeS 5·09, Fe 10·22, Ni 1·58, Co tr. total 99·76. The metal displays Neumann bands, some deformed, as well as areas of apparent flowage. Troilite locally exhibits twin lamellae and in places replaces kamacite in the plessite fields. Elsewhere it is in braided veinlets and globules, both reflecting former melting. The varied textures suggest a complex post-formational history encompassing several deformational events presumably due to breakups and possible extraterrestrial impacts.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1971

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

Published with the kind permission of the Director-General, Geological Survey of India.

References

Buseck, (P.R.), 1967. Geochimica Acta. 31, 1583-7.CrossRefGoogle Scholar
Fredriksson, (K.), DECARLI (P. S. P.), and Aaramae, (A.), 1963. Space Research 3, North Holland Publishing Co.Google Scholar
Fredriksson, (K.), DECARLI (P. S. P.), and Aaramae, (A.), and Mason, (B.), 1967. Geochimica Acta. 31, 1705-9.CrossRefGoogle Scholar
Hess, (H. H.), 1949. Amer. Min. 34, 621-66.Google Scholar
Keil, (K.), 1962a. Journ. Geophys. Res. 67, 4055-61.CrossRefGoogle Scholar
Keil, (K.), 1962b. Chem. Erde. 22, 281-348.Google Scholar
Kondo, (A.) and Fuke, (Y.), 1958. Jour..lap. Inst. Metals, 22 (6), 286.Google Scholar
Kuno, (H.), 1954. Amer. Min. 39, 30-46.Google Scholar
Mason, (B.), 1967, Ibid. 52, 307-27.Google Scholar
Medlicott, (H.B.), 1876. Proc. Asiatic Soc. Bengal, 1 1516.Google Scholar
Murthy, (M. V. N.), Srivastava, (S. N. P.), and Dube, (A.), 1967. Mem. Geol. Surv. Ind. 99.Google Scholar
Poldervaart, (A.), 1950. Amer. Min. 35, 1067-79.Google Scholar
Prior, (G.T.), 1920. Min. Mag. 19, 51-63.Google Scholar
Urey, (H.C.) and Craig, (H.), 1953. Geochimica Acta. 4, 36-82.CrossRefGoogle Scholar
Urey, (H.C.)and Mayeda, (T.), 1959. Ibid. 17, 113-24.Google Scholar
Wood, (J.A.), 1967. Icarus. 6, 1-49.CrossRefGoogle Scholar
Yoder, (H. S., Jr.) and Sahama, (Z.G.), 1957. Amer. Min. 42, 475-91.Google Scholar
Zukas, (E.G.) and Taylor, (J.W.), 1965. Trans. Met. Soc., Amer. Inst. Min. Met. Engrs. 233, 828-9.Google Scholar