Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-10T04:10:58.719Z Has data issue: false hasContentIssue false

Spontaneous strain in synthetic titanite, CaTiOSiO4

Published online by Cambridge University Press:  05 July 2018

T. Malcherek*
Affiliation:
Institut für Mineralogie, WWU Münster, Corrensstr. 24, 48149 Münster, Germany

Abstract

Lattice parameters of synthetic titanite powder, CaTiOSiO4, have been determined between room temperature and 1023 K. Only the e11 and e13 components contribute significantly to the strain tensor associated with the antiferroelectric-paraelectric phase transition at Tc = 487 K. A finite strain component e13 is observed in the paraelectric phase for 487 K < T < 825 K. The disappearance of this shear strain marks the isosymmetric transition near 825 K. The temperature evolution of the volume strain and of e11 is proportional to the squared order parameter observed in single-crystal diffraction experiments. The magnitude of the volume strain is sufficiently large to relate the observed near tricritical behaviour of the antiferroelectric-paraelectric phase transition to strain coupling.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angel, R.J., Kunz, M., Miletich, R., Woodland, A.B., Koch, M. and Xirouchakis, D. (1999) High-pressure phase transition in CaTiOSiO4 titanite. Phase Trans., 68, 533–43.CrossRefGoogle Scholar
Bismayer, U., Schmahl, W., Schmidt, C. and Groat, L. (1992) Linear birefringence and X-ray diffraction studies of the structural phase transition in titanite, CaTiSiO5 . Phys. Chem. Miner., 19, 260–6.CrossRefGoogle Scholar
Carpenter, M.A., Salje, E.K.H. and Graeme-Barber, A. (1998) Spontaneous strain as a determinant of thermodynamic properties for phase transitions in minerals. Eur. J. Mineral., 10, 621–91.CrossRefGoogle Scholar
Chrosch, J., Bismayer, U. and Salje, E. (1997) Antiphase boundaries and phase transitions in titanite: An X-ray diffraction study. Amer. Mineral., 82, 677–81.CrossRefGoogle Scholar
Ghose, S., Ito, Y. and Hatch, D.M. (1991) Paraelectric-antiferroelectric phase transition in titanite, CaTiSiO5. I. A high temperature X-ray diffraction study of the order parameter and transition mechanism. Phys. Chem. Miner., 17, 591–603.Google Scholar
Hayward, S.A., del Cerro, J. and Salje, E.K.H. (2000) Antiferroelectric phase transition in titanite: Excess entropy and short range order. Amer. Mineral., 85, 557–62.CrossRefGoogle Scholar
Kek, S., Aroyo, M., Bismayer, U., Schmidt, C., Eichhorn, K. and Krane, H. (1997) The two-step phase transition of titanite, CaTiSiO5: A synchrotron radiation study. Zeits. Kristallogr., 212, 9–19.Google Scholar
Kunz, M., Arlt, T. and Stolz, J. (2000) In situ powder diffraction study of titanite (CaTiOSiO4) at high pressure and high temperature. Amer. Mineral., 85, 1465–73.CrossRefGoogle Scholar
Larson, A. and Von Dreele, R. (1994) General structure analysis system (GSAS). Technical Report LAUR B6-748, Los Alamos National Laboratory Report, Los Alamos, New Mexico.Google Scholar
Malcherek, T., Domeneghetti, M., Tazzoli, V., Salje, E. and Bismayer, U. (1999) A high temperature X-ray diffraction study of synthetic titanite, CaTiOSiO4 . Phase Trans., 69, 119–31.CrossRefGoogle Scholar
Malcherek, T., Paulmann, C., Domeneghetti, M.C. and Bismayer, U. (2001) Diffuse scattering anisotropy and the P21/aA2/a phase transition in titanite, CaTiOSiO4 . J. Appl. Crystallogr., 34, 108–13.CrossRefGoogle Scholar
Masuda, K., Erskine, D. and Anderson, O.L. (2000) Differential laser-interferometer for thermal expansion measurements. Amer. Mineral., 85, 279–82.CrossRefGoogle Scholar
Salje, E., Schmidt, C. and Bismayer, U. (1993) Structural phase transition in titanite, CaTiSiO5: A Raman spectroscopic study. Phys. Chem. Miner., 19, 502–6.CrossRefGoogle Scholar
Taylor, M. and Brown, G. (1976) High-temperature structural study of the P21/aA2/a phase transition in synthetic titanite, CaTiSiO5 . Amer. Mineral., 61, 435–47.Google Scholar
Van Heurck, C., Van Tendeloo, G., Ghose, S. and Amelinckx, S. (1991) Paraelectric-antiferroelectric phase transition in titanite, CaTiSiO5 . Phys. Chem. Miner., 17, 604–10.CrossRefGoogle Scholar
Zhang, M., Salje, E., Bismayer, U., Unruh, H., Wruck, B. and Schmidt, C. (1995) Phase transition(s) in titanite CaTiSiO5: An infrared spectroscopic, dielectric response and heat capacity study. Phys. Chem. Miner., 22, 41–9.CrossRefGoogle Scholar
Zhang, M., Salje, E. and Bismayer, U. (1997) Structural phase transition near 825 K in titanite: evidence from infrared spectroscopic observations. Amer. Mineral., 82, 30–5.CrossRefGoogle Scholar