Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-13T12:32:23.893Z Has data issue: false hasContentIssue false

The stabilities of secondary tin minerals: abhurite and its relationships to Sn(II) and Sn(IV) oxides and oxyhydroxides

Published online by Cambridge University Press:  05 July 2018

R. Edwards
Affiliation:
School of Chemistry and Applied Chemistry, University of Wales College of Cardiff, P.O. Box 912, Cardiff CF1 3TB, U.K.
R. D. Gillard
Affiliation:
School of Chemistry and Applied Chemistry, University of Wales College of Cardiff, P.O. Box 912, Cardiff CF1 3TB, U.K.
P. A. Williams
Affiliation:
School of Chemistry and Applied Chemistry, University of Wales College of Cardiff, P.O. Box 912, Cardiff CF1 3TB, U.K.

Abstract

The true formula of abhurite is Sn21Cl16(OH)14O6. A stability constant for the phase has been determined at 298.2 K. For the reaction Sn21Cl16(OH)14O6 (s) + 26H+ (aq) ⇋ 21Sn2+ (aq) + 16Cl (aq) + 20H2O (1), log KH+ (298.2 K) is equal to -39.9 (7). This value is used to assess the relative stability of abhurite in the natural environment and to evaluate its modes of occurrence in relation to other secondary Sn(II) and Sn(IV) species.

Type
Mineralogy
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Present address: Department of Chemistry, University of Western Sydney Nepean, P.O. Box 10, Kingswood, NSW 2747, Australia.

References

Baes, C. F. and Mesmer, R. E. (1976) The Hydrolysis of Cations, New York: John Wiley and Sons, Inc. Google Scholar
Barner, H. E. and Scheuerman, R. V. (1978) Handbook of Thermochemical Data for Compounds and Aqueous Species, New York: John Wiley and Sons, Inc. Google Scholar
Britton, H. T. S. (1925) J. Chem. Soc., 2120-41.CrossRefGoogle Scholar
Carson, C. M. (1919) J. Amer. Chem. Soc., 41, 1969–77.CrossRefGoogle Scholar
Ditte, M. A. (1882) Compt. Rend. Acad. Sci. Paris, 94, 792–4.Google Scholar
Donaldson, J. D. (1961) Acta Cryst., 14, 65.CrossRefGoogle Scholar
Donaldson, J. D. and Moser, W. (1961) J. Chem. Soc., 835-8.CrossRefGoogle Scholar
Donaldson, J. D. and Simpson, W. B. (1963) Ibid., 1727-31.Google Scholar
Hayek, E. (1933) Z. anorg, allgem. Chem., 210, 241–5.CrossRefGoogle Scholar
Honnick, W. D. and Zuckerman, J. J. (1976) Inorg. Chem., 15, 12. 3034-6.Google Scholar
Howie, R. A. and Moser, W. (1973) Am. Mineral., 58, 552.Google Scholar
Ichiba, S. and Takeshita, M. (1984) Bull. Chem. Soc. Japan, 57, 1087–91.CrossRefGoogle Scholar
Krauskopf, K. B. (1982) Introduction to Geochemistry, Second Edition, Singapore: McGraw-Hill, Inc. Google Scholar
Lide, D. R. (1990) Handbook of Chemistry and Physics, 71st Edition, Boston: CRC Press.Google Scholar
Matzko, J. J., Evans, H. T., Mrose, M. E., and Aruscavage, P. (1985) Can. Mineral., 23, 233–40.Google Scholar
Organ, R. M. and Mandarino, J. A. (1971) Ibid., 10, 916.Google Scholar
Perrin, D. D. and Sayce, I. G. (1967) Talanta, 14, 833–42.CrossRefGoogle Scholar
Randall, M. and Murakami, S. (1930) J. Am. Chem. Soc., 52, 3967–71.CrossRefGoogle Scholar
Robie, R. A., Hemingway, B. S., and Fisher, J. R. (1978) U.S. Geol. Surv. Bull., 1452.Google Scholar
Smith, R. M. and Martell, A. E. (1976) Critical Stability Constants, 4. New York: Plenum.CrossRefGoogle Scholar
Tobias, R. S. (1958) Acta Chem. Scand., 12, 198223.CrossRefGoogle Scholar
von Schnering, H. G., Nesper, R., and Pelshenke, H. (1981) Z. Naturforsch., 36b, 1551–60.CrossRefGoogle Scholar