Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-28T15:58:52.478Z Has data issue: false hasContentIssue false

The stability of the rare sodium antimonate, brizziite, and it's role in Sb mobility

Published online by Cambridge University Press:  28 February 2018

Adam J. Roper*
Affiliation:
School of Science and Health, University of Western Sydney, Locked Bag 1797, Penrith, New South Wales 2451, Australia
Peter Leverett
Affiliation:
School of Science and Health, University of Western Sydney, Locked Bag 1797, Penrith, New South Wales 2451, Australia
Timothy D. Murphy
Affiliation:
School of Science and Health, University of Western Sydney, Locked Bag 1797, Penrith, New South Wales 2451, Australia
Peter A. Williams
Affiliation:
School of Science and Health, University of Western Sydney, Locked Bag 1797, Penrith, New South Wales 2451, Australia

Abstract

Synthesis and solubility studies of brizziite, NaSbO3, have been undertaken to determine the possible role of this rare secondary phase in the immobilization of Sb under supergene conditions and the conditions responsible for its formation in the supergene zone. Solubility studies were undertaken at T = 298.15 K. A value of ΔGfө) (NaSbO3, s, 298.15 K) = –806.66 ± 1.4 kJ mol–1 was derived. Calculations involving tripuhyite, FeSbO4, byströmite, MgSb2O6, ordoñezite, ZnSb2O6 and rosiaite, PbSb2O6, show that brizziite is a thermodynamically stable phase only at negligible activities of Pb2+(aq) at high pH and high salinity. Calculations involving mopungite Na[Sb(OH)6] combined with reported mineral associations suggest that mopungite is the thermodynamically unstable precursor to brizziite and its presence in natural settings must be due to kinetic stability. This explains why brizziite is such a rare secondary phase and therefore why it cannot exert any significant influence on the dispersion of Sb in the supergene environment.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Juraj Majzlan

References

Accornero, M., Marini, L. and Lelli, M. (2008) The dissociation constant of antimonic acid at 10–40°C. Journal of Solution Chemistry, 37, 785800.Google Scholar
Baes, C.F. Jr and Mesmer, R.E. (1976) The Hydrolysis of Cations. Wiley Interscience, New York.Google Scholar
Blandamer, M.J., Burgess, J. and Peacock, R.D. (1974) Solubility of sodium hexahydroxoantimonate in water and in mixed aqueous solvents. Journal of the Chemical Society, Dalton Transactions, 10841086.Google Scholar
Brizzi, G. and Meli, R. (1990) La miniera della Selva (Casal di Pari-GR). Rivista Mineralogica Italiana, 14, 225239.Google Scholar
Brizzi, G., Ciselli, I. and Santucci, A. (1988) Cetineite ed altre novità dalle Cetine di Cotorniano. Rivista Mineralogica Italiana, 12, 7382.Google Scholar
Cox, J.D., Wagman, D.D. and Medvedev, V.A. (1989) CODATA Key Values for Thermodynamics. Hemisphere Press, New York.Google Scholar
Langford, J.I. (1973) Least-squares refinement of cell dimensions from powder data by Cohen's method. Journal of Applied Crystallography, 6, 190196.Google Scholar
Leverett, P., Reynolds, J.K., Roper, A.J. and Williams, P.A. (2012) Tripuhyite and schafarzikite: two of the ultimate sinks for antimony in the natural environment. Mineralogical Magazine, 76, 891902.Google Scholar
Marzoni Fecia Di Cossato, Y., Meacci, C., Orlandi, R. and Vezzalini, G. (1987) The second world occurrence of mopungite from the Pereta Mine, Tuscany, Italy = La deuxième occurrence au monde de mopungite dans la Mine Pereta, Toscane, Italie. Atti della Societa Toscana di Scienze Naturali Residente in Pisa, Memorie, Processi Verbali, Serie A, 94, 135138.Google Scholar
Meli, R. (1999) I minerali delle discariche e delle scorie del Fosso del Tafone (Grosseto). Rivista Mineralogica Italiana, 23, 187191.Google Scholar
Olmi, F. and Sabelli, C. (1994) Brizziite, NaSbO3, a new mineral from the Cetine mine (Tuscany, Italy): description and crystal structure. European Journal of Mineralogy, 6, 667672.Google Scholar
Origlieri, M.J., Laetsch, T.A. and Downs, R.T. (2007) A note on the paragenesis of ottensite. The Mineralogical Record, 38, 8384.Google Scholar
Preite, D. (1992) Le Cetine, Pereta und Poggio Peloso: Berühmte Antimonerz-Minen der Toskana. Lapis, 17, 1725.Google Scholar
Ramirez-Menses, E., Chavira, E., Domínguez-Crespo, M.A., Escamilla, R., Flores-Flores, J.O and Soto-Guzmán, A.B. (2007) Synthesis and characterization of NaSbO3 compound. Superficies y Vacio, 20(4), 1418.Google Scholar
Roper, A.J., Williams, P.A. and Fillela, M. (2012) Secondary antimony minerals: Phases that control the dispersion of antimony in the supergene zone. Chemie der Erde, 72S4, 914.Google Scholar
Roper, A.J., Leverett, P., Murphy, T.D. and Williams, P.A. (2014) Stabilities of byströmite, MgSb2O6, ordoñezite, ZnSb2O6 and rosiaite, PbSb2O6, and their possible roles in limiting antimony mobility in the supergene zone. Mineralogical Magazine, 79(3), 537544.Google Scholar
Sabelli, C., Nakai, I. and Katsura, S. (1988) Crystal structures of cetineite and its synthetic Na analogue Na3.6(Sb2O3)3(SbS3)(OH)0.6·2.4(H2O). American Mineralogist, 73, 398404.Google Scholar
Sejkora, J. and Hyršl, J. (2007) Ottensite, a new mineral from Qinglong, Guizhou Province, China. Mineralogical Record, 38, 7781.Google Scholar
Williams, S.A. (1985) Mopungite, a new mineral from Nevada. Mineralogical Record, 16, 7374.Google Scholar
Wang, X. and Liebau, F. (1998) An investigation of microporous cetineite-type phases A6[B12O18][CX3]2[Dx(H2O,OH,O)6–y]. II. The cetineite structure field. European Journal of Solid State Inorganic Chemistry, 35, 2737.Google Scholar
Wang, X. and Liebau, F. (1999) An investigation of microporous cetineite-type phases A6[B12O18][CX3]2[Dx(H2O,OH,O)6–y]. II. Crystal structures and their changes with composition. Zeitschrift für Kristallographie, 214, 820834.Google Scholar
Wang, B., Chen, S.C. and Greenblatt, M. (1994) The crystal structure and ionic conductivity of the ilmenite polymorph of NaSbO3. Journal of Solid State Chemistry, 108(1), 184188.Google Scholar