Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T11:45:16.439Z Has data issue: false hasContentIssue false

Structural variation in wollastonite and bustamite

Published online by Cambridge University Press:  05 July 2018

R. J. Angel*
Affiliation:
Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ

Abstract

The structures of bustamite and the poly-types of wollastonite are shown to be derived from variations in the stacking sequence of a single type of structural unit. This structural unit is a column of unit cells of wollastonite along the b-axis and is bounded by (100) and (001) planes (P1̄ cell); these units may be stacked together along [100] and [001] with either zero displacement between successive units, or a relative displacement of 1/2[010]. Regular stacking sequences give rise to the ordered structures of wollastonite polytypes and of bustamite, while the transformations between these structures proceed by the propagation of line defects with Burgers vectors of 1/2[010] which thus change the stacking sequence of the structural units.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1985 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrecht, J. (1980) Contrib. Mineral. Petrol. 74, 253-60.Google Scholar
Abrecht, J. and Peters, Tj. (1980) Ibid. 74, 261-9.Google Scholar
Akai, J. (1975) Mem. Faculty Set Kyoto University, Series of Geology and Mineralogy 41(2), 114.Google Scholar
Angel, R. J., Price, G. D., and Putnis, A. (1984) Phys. Chem. Mineral. 10, 236-43.Google Scholar
Buerger, M. J., and Prewitt, C. T. (1961) Proc. Nat. Acad. Sci. 47, 1884-8.Google Scholar
Henmi, C., Kawahara, A., Henmi, K., Kusachi, I., and Takeuchi, Y. (1983) Am. Mineral. 68, 156-63.Google Scholar
Henmi, C. Kusachi, I., Kawahara, A., and Henmi, K. (1978) Mineral J. 9, 169-81.Google Scholar
Hutchison, J. L., and McLaren, A. C. (1977) Contrib. Mineral. Petrol. 61, 11-13.Google Scholar
Ito, T. (1950) Maruzen, Tokyo. 93-110.Google Scholar
Jefferson, D. A. (1972) A study of stacking disorder in some silicate minerals. Ph.D. thesis, Univ. Cambridge.Google Scholar
Koto, K., Morimoto, N., and Narita, H. (1976) J. dap. Ass. Mineral. Petrol. Econ. Geol. 71, 248-54.Google Scholar
Liebau, F. (1972) In Handbook of Geochemistry II/2 (Wedepohl, K. H., ed.). Springer-Verlag, Berlin.Google Scholar
Mamedov, Kh. S., and Belov, N. V. (1956) Dokl. Acad. Nauk SSSR 107, 463-6.Google Scholar
Muller, W. F. (1976) Z. Kristallogr. 144, 401-8.Google Scholar
Ohashi, Y., and Finger, L. W. (1978) Am. Mineral. 63, 274-88.Google Scholar
O'Keefe, M. A., and Buseck, P. (1979) Trans. Am. Crystallogr. Ass. 15, 27-46.Google Scholar
Peacor, D. R., and Buerger, M. J. (1962) Z. Kristallogr. 117, 331-43.Google Scholar
Rapoport, P. A., and Burnham, C. W. (1973) Ibid. 138, 419-38.Google Scholar
Shimazaki, H., and Yamanaka, T. (1973) Geochem. J. 7, 6779.Google Scholar
Takeuchi, Y. (1971) J. Mineral. Soc. Japan 10, Special paper 2, 8799.Google Scholar
Thompson, J. B. (1970) Am. Mineral. 55, 292-3.Google Scholar
Thompson, J. B. (1981) In Structure and Bonding in Crystals II (O'Keefe, M. and Navrotsky, A., eds.). Academic Press.Google Scholar
Tilley, C. E. (1937) Mineral. Mag. 24, 569-72.Google Scholar
Tilley, C. E. (1947) Bull. Comm. Geol. Finlande 140, 97105.Google Scholar
Tilley, C. E. and Harwood, H. F. (1931) Mineral Mag. 22, 439-68.Google Scholar
Trojer, F. J. (1968) Z. Kristallogr. 127, 291308.Google Scholar
Wenk, H.-R. (1969) Contrib. Mineral. Petrol. 22, 238-47.Google Scholar
Yamanaka, T., Sadanaga, R., and Takeuchi, Y. (1977) Am. Mineral. 62, 1216-24.Google Scholar
Zoltai, T. (1960) Am. Mineral. 45, 960-73.Google Scholar