Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-28T22:24:10.886Z Has data issue: false hasContentIssue false

The structure of antimonian dussertite and the role of antimony in oxysalt minerals

Published online by Cambridge University Press:  05 July 2018

U. Kolitsch
Affiliation:
Department of Mineralogy, South Australian Museum, North Terrace, Adelaide, S. A. 5000, Australia
P. G. Slade
Affiliation:
CSIRO Land and Water, Private Bag No. 2, Glen Osmond, S. A. 5064, Australia
E. R. T. Tiekink
Affiliation:
Department of Chemistry, The University of Adelaide, Australia 5005
A. Pring
Affiliation:
Department of Mineralogy, South Australian Museum, North Terrace, Adelaide, S. A. 5000, Australia

Abstract

The structure of antimonian dussertite, (AsO4)2(OH,H2O)6, has been refined in space group R3̄m with a 7.410(3), c 17.484(4) Å, Z = 3, to R = 3.2 % and Rw = 3.7 % using 377 observed reflections with I ≥ 3 σ(I). The structure is of the alunite-type and consists of sheets of corner-sharing (Fe3+,Sb5+)O6 octahedra parallel to (0001). The substitution of Sb5+ for Fe3+, and not for As5+, is unambiguously demonstrated not only by the structure refinement but also by electron microprobe analyses and crystal-chemical considerations. The icosahedrally coordinated Ba cations occupy cavities between pairs of octahedral sheets and are surrounded by six O atoms from the AsO4 tetrahedra and six O atoms from the (Fe3+,Sb5+)O6 octahedra. The mean bond lengths for the various coordination polyhedra are As-O 1.684(3) Å, (Fe,Sb)-O 2.004(1) Å, and Ba-O 2.872(2) Å. A hydrogen-bonding network is modelled using bond-valence calculations. The dussertite sample investigated is the first member of the crandallite group found to contain substantial Sb.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barth, T.F.W. and Berman, H. (1930) Chem.Erde, 5, 2242. [cited in Foshag (1937)].Google Scholar
Baur, W.H. (1981) Interatomic distance predictions for computer simulation of crystal structures. In Structure and Bonding in Crystals (O'Keeffe, M. and Navrotsky, A., eds.), Vol. II, Academic Press, New York, 3152.CrossRefGoogle Scholar
Birch, W.D. and van der Heyden, A. (1997) Minerals of the Kintore and Block 14 open cuts at Broken Hill, New South Wales. Austral. J. Mineral., 3, 2371.Google Scholar
Blanchard, F.N. (1989) New X-ray powder data for gorceixite, BaAl3(PO4)2(OH)6·H2O, an evaluation of d-spacings and intensities, pseudosymmetry and its influence on the figure of merit. Powder Diffraction, 4, 227–30.CrossRefGoogle Scholar
Blount, A.M. (1974) The crystal structure of crandallite. Amer. Mineral., 59, 41–7.Google Scholar
Brese, N.E. and O'Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallogr., B47, 192–7.CrossRefGoogle Scholar
Brown, I.D. (1988) What factors determine cation coordination numbers? Acta Crystallogr., B44, 545–53.CrossRefGoogle Scholar
Brown, I.D. and Altermatt, D. (1985) Bond valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystallogr., B41, 241–7.CrossRefGoogle Scholar
Brown, I.D. and Wu, K.K. (1976) Empirical parameters for calculating cation-oxygen bond valences. Acta Crystallogr., B32, 1957–9.CrossRefGoogle Scholar
Cowgill, U., Hutchinson, G.E. and Joensuu, O. (1963) An apparent triclinic dimorph of crandallite from a tropical swamp sediment in El Petén, Guatemala. Amer. Mineral., 48, 1144–53.Google Scholar
de Bruiyn, H., van derWesthuizen, W.A., Beukes, G.J. and Meyer, T.Q. (1990) Corkite from Aggeneys, Bushmanland, South Africa. Mineral. Mag., 54, 603–8.CrossRefGoogle Scholar
de Meulenaer, J. and Tompa, H. (1965) The absorption correction in crystal structure analysis. Acta Crystallogr., 19, 1014–8.CrossRefGoogle Scholar
Dunn, P.J., Peacor, D.R., Criddle, A.J. and Stanley, C.J. (1988) Filipstadite, a new Mn-Fe3+-Sb derivative of spinel, from Långban, Sweden. Amer. Mineral., 73, 413–9.Google Scholar
Ferraris, G. and Ivaldi, G. (1984) X-OH and O-H…O bond lengths in protonated oxyanions. Acta Crystallogr., B40, 16.CrossRefGoogle Scholar
Fleischer, M. and Mandarino, J.A. (1995) Glossary of Mineral Species 1995. The Mineralogical Record Inc., Tucson, USA.Google Scholar
Fleischer, M. and Mandarino, J.A. (1997) The first list of additions and corrections to the Glossary of Mineral Species 1995. Mineral. Record, 28, 425–38.Google Scholar
Foshag, W.F. (1937) Carminite and associated minerals from Mapimi, Mexico. Amer. Mineral., 22, 479–84.Google Scholar
Giuseppetti, G. and Tadini, C. (1980) The crystal structure of osarizawaite. Neues Jahrb. Mineral. Mh., 401–7.Google Scholar
Giuseppetti, G. and Tadini, C. (1987) Corkite PbFe3(SO4)(PO4)(OH)6, its crystal structure and ordered arrangement of tetrahedral cations. Neues Jahrb. Mineral. Mh., 7181.Google Scholar
Giuseppetti, G. and Tadini, C. (1989) Beudantite PbFe3(SO4)(AsO4)(OH)6, its crystal structure, tetrahedral site disordering and scattered Pb distribution. Neues Jahrb. Mineral. Mh., 2733.Google Scholar
Hill, R.J. (1977) A further refinement of the barite structure. Canad. Mineral., 15, 522–6.Google Scholar
Hintze, C. (1933) Handbuch der Mineralogie. Vol. I-4, Part 2, 721–41. Walter de Gruyter & Co., Berlin.Google Scholar
International Tables for X-ray Crystallography (1974) Vol. IV, Kynoch Press, Birmingham, England, 558 pp.Google Scholar
Jambor, J.L. and Dutrizac, J.E. (1983) Beaverite-plumbojarosite solid solutions. Canad. Mineral., 21, 101–13.Google Scholar
Jambor, J.L., Owens, D.R., Grice, J.D. and Feinglos, M.N. (1996) Gallobeudantite, PbGa3[(AsO4), (SO4)]2(OH)6, a new mineral species from Tsumeb, Namibia, and associated new gallium analogues of the alunite-jarosite family. Canad. Mineral., 34, 1305–15.Google Scholar
Kato, T. (1977) Further refinement of the woodhouseite structure. Neues Jahrb. Mineral. Mh., 54–8.Google Scholar
Kato, T. and Radoslovich, E.W. (1968) Crystal structures of soil phosphates. Trans. 9th Int. Congr. of Soil Science, Vol. II, Int. Soc. of Soil Science, Adelaide, Australia, 725–31.Google Scholar
Kharisun, , Taylor, M.R., Bevan, D.J.M. and Pring, A. (1997) The crystal structure of kintoreite, PbFe3(PO4)2(OH,H2O)6. Mineral. Mag., 61, 123–9.CrossRefGoogle Scholar
Lengauer, C.L., Giester, G. and Irran, E. (1994) KCr3(SO4)2(OH)6: Synthesis, characterization, powder diffraction data, and structure refinement by the Rietveld technique and a compilation of alunite-type compounds. Powder Diffraction, 9, 265–71.CrossRefGoogle Scholar
Lottermoser, B.G. (1990) Rare-earth element miner-alisation within the Mt. Weld carbonatite laterite, Western Australia. Lithos, 24, 151–67.CrossRefGoogle Scholar
Mandarino, J.A. and Grice, J.D. (1997) New minerals recently approved. Mineral. Record, 28, 397400.Google Scholar
Martin, M., Schlegel, F. and Siemroth, J. (1994) The mining district Niederschlag near Oberwiesenthal: Rare copper arsenates from the Saxonian Erzgebirge. Lapis, 19 (4), 1322. (in German)Google Scholar
Meagher, E.P., Gibbons, C.S. and Trotter, J. (1974) The crystal structure of jagowerite: BaAl2P2O8(OH)2 . Amer. Mineral., 59, 291–5.Google Scholar
Molecular Structure Corporation (1993) teXsan – Single Crystal Structure Analysis Software, Version 1.6. Molecular Structure Corporation, The Woodlands, TX 77381, USA.Google Scholar
O'Keeffe, M. (1991) EUTAX, a Computer Program for Calculating Bond Valences. Dept. of Chemistry, University of Arizona, USA.Google Scholar
Olmi, F., Sabelli, C. and Trosti-Ferroni, R. (1995) The crystal structure of sabelliite. Eur. J. Mineral., 7, 1331–7.CrossRefGoogle Scholar
Palache, C., Berman, C. and Frondel, C. (1951) Dana's System of Mineralogy. 7th ed., Vol. II. John Wiley, New York.Google Scholar
Radoslovich, E.W. (1982) Refinement of the gorceixite structure in Cm. Neues Jahrb. Mineral. Mh., 446–64.Google Scholar
Radoslovich, E.W. and Slade, P.G. (1980) Pseudo-trigonal symmetry and the structure of gorceixite. Neues Jahrb. Mineral. Mh., 157–70.Google Scholar
Rattray, K.J., Taylor, M.R., Bevan, D.J.M. and Pring, A. (1996) Compositional segregation and solid solution in the lead dominant alunite-type minerals from Broken Hill, N.S.W. Mineral Mag., 60, 779–85.CrossRefGoogle Scholar
Schwab, R.G., Herold, H., Götz, C. and de Oliveira, N.P. (1990) Compounds of the crandallite type: Synthesis and properties of pure goyazite, gorceixite and plumbogummite. Neues Jahrb. Mineral. Mh., 113–26.Google Scholar
Scott, K.M. (1987) Solid solution in, and classification of, gossan-derived members of the alunite-jarosite family, northwest Queensland, Australia. Amer. Mineral., 72, 178–87.Google Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr., A32, 751–67.CrossRefGoogle Scholar
Shannon, R.D. and Calvo, C. (1973) Refinement of the crystal structure of low temperature Li3VO4 and analysis of mean bond lengths in phosphates, arsenates, and vanadates. J. Solid State Chem., 6, 538–49.CrossRefGoogle Scholar
Sima, I., Ettinger, K., Koppelhuber-Bitschnau, B., Taucher, J. and Walter, F. (1996) Pb3Sb(OH)6 (AsO4,SO4)2·3H2O, a new mineral isotypic with fleischerite. Mitt. Österr. Mineral. Ges., 141, 224–5. (in German)Google Scholar
Smith, R.L., Simons, F.S. and Vlisidis, A.C. (1953) Hidalgoite, a new mineral. Amer. Mineral., 38, 1218–24.Google Scholar
Süsse, P. and Tillmann, B. (1987) The crystal structure of the new mineral richelsdorfite, Ca2Cu5Sb(Cl/(OH)6/(AsO4)4)·6H2O. Z. Kristallogr., 179, 323–34.CrossRefGoogle Scholar
Szymański, J.T. (1985) The crystal structure of plumbojarosite, Pb[Fe3(SO4)2(OH)6]2 . Canad. Mineral., 23, 659–68.Google Scholar
Szymański, J.T. (1988) The crystal structure of beudantite Pb(Fe,Al)3[(As,S)O4]2(OH)6 . Canad. Mineral., 26, 923–32.Google Scholar
Walenta, K. (1966) Contributions to the knowledge of rare arsenate minerals with special respect to occurrences in the Black Forest. Tschermaks Mineral. Petrogr. Mitt., 11, 121–64. (in German)CrossRefGoogle Scholar
Wise, W.S. (1975) Solid solution between the alunite, woodhouseite, and crandallite mineral series. Neues Jahrb. Mineral. Mh., 540–5.Google Scholar