Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-29T04:49:08.311Z Has data issue: false hasContentIssue false

The structure of charoite, (K,Sr,Ba,Mn)15–16(Ca,Na)32[(Si70(O,OH)180)](OH,F)4.0.nH2O, solved by conventional and automated electron diffraction

Published online by Cambridge University Press:  05 July 2018

I. Rozhdestvenskaya*
Affiliation:
Department of Crystallography, Geological Faculty, Saint Petersburg State University, University emb. 7/9, St. Petersburg, 199034, Russia Department of Crystallography, Institute of Geowissenschaften, Christian-Albrechts-University, Olshausenstrasse 40, D-24098, Kiel, Germany
E. Mugnaioli
Affiliation:
Institute of Physical Chemistry, Johannes Gutenberg-University, Welderweg 11, D-55099, Mainz, Germany
M. Czank
Affiliation:
Department of Crystallography, Institute of Geowissenschaften, Christian-Albrechts-University, Olshausenstrasse 40, D-24098, Kiel, Germany
W. Depmeier
Affiliation:
Department of Crystallography, Institute of Geowissenschaften, Christian-Albrechts-University, Olshausenstrasse 40, D-24098, Kiel, Germany
U. Kolb
Affiliation:
Institute of Physical Chemistry, Johannes Gutenberg-University, Welderweg 11, D-55099, Mainz, Germany
A. Reinholdt
Affiliation:
Rheinisch-Westfaelische Technische Hochschule, Central Facility for Electron Microscopy, Aachen University, Ahornstrasse 55, D-52074, Aachen, Germany
T. Weirich
Affiliation:
Rheinisch-Westfaelische Technische Hochschule, Central Facility for Electron Microscopy, Aachen University, Ahornstrasse 55, D-52074, Aachen, Germany

Abstract

Charoite, ideally (K,Sr,Ba,Mn)15–16(Ca,Na)32[(Si70(O,OH)180)](OH,F)4.0·nH2O, a rare mineral from the Murun massif in Yakutiya, Russia, was studied using high-resolution transmission electron microscopy, selected-area electron diffraction, X-ray spectroscopy, precession electron diffraction and the newly developed technique of automated electron-diffraction tomography. The structure of charoite (a = 31.96(6) Å, b = 19.64(4) Å, c = 7.09(1) Å, β = 90.0(1)°, V = 4450(24) Å3, space group P21/m) was solved ab initio by direct methods from 2878 unique observed reflections and refined to R1/wR2 = 0.17/0.21. The structure can be visualized as being composed of three different dreier silicate chains: a double dreier chain, [Si6O17]10–; a tubular loop-branched dreier triple chain, [Si12O30]12–; and a tubular hybrid dreier quadruple chain, [Si17O43]18–. The silicate chains occur between ribbons of edge-sharing Ca and Na-octahedra. The chains of tetrahedra and the ribbons of octahedra extend parallel to the z axis. K+, Ba2+, Sr2+, Mn2+ and H2O molecules lie inside tubes and channels of the structure. On the basis of microprobe analyses and occupancy refinement of the cation sites, the crystal chemical formula of this charoite can be written as (Z = 1): (K13.88Sr1.0Ba0.32Mn0.36)Σ15.56(Ca25.64Na6.36)Σ32 [(Si6O11(O,OH)6)2(Si12O18(O,OH)12)2(Si17O25(O,OH)18)2](OH,F)4.0·3.18H2O.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akselrud, L.G., Grin, Yu.N., Zavalii, P.Yu., Pecharsky, V.K. and Fundamensky, V.S. (1989) CSD – the programs for determination and refinement crystal structures. Collected Abstracts X11 European Crystallography meeting, Moscow, 3, 155.Google Scholar
Avilov, A., Kuligin, K., Nicolopoulos, S., Nickolskiy, M., Boulahya, K., Portillo, J., Lepeshov, G., Sobolev, B., Collette, J.P., Martin, N., Robins, A.C. and Fischione, P. (2007) Precession technique and electron diffractometry as new tools for crystal structure analysis and chemical bonding determination. Ultramicroscopy, 107, 431444.CrossRefGoogle ScholarPubMed
Burla, M.C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G.L., De Caro, L., Giacovazzo, C., Polidori, G., Diligi, S. and Spagna, R. (2007) IL MILIONE: a suite of computer programs for crystal structure solution of proteins. Journal of Applied Crystallography, 40, 609613.CrossRefGoogle Scholar
Chiragov, M.I. and Shirinova, A.F. (2004) Crystal structure of charoite; relations to structures of miserite, canasite and okenite. Mineralogicheskiy Zhurnal, 26(4), 59. (in Russian).Google Scholar
Czank, M. and Bissert, G. (1993) The crystal structure of Li2Mg2[Si4O11], a loop-branched dreier single chain silicate. Zeitschrift für Kristallographie, 204, 129142.Google Scholar
Evdokimov, M.D., Bulach, À.G. and Borisov, À.B. (1995) Morphogenetic types of charoite and their jeweller's qualities. Mineralogicheskiy Zhurnal, 7(5), 2431. (in Russian).Google Scholar
Evdokimov, M.D., Rodishevskii, D.V. and Fadeeva, I.K. (2000) About the tints of charoite colourings. Abstracts of Meeting “Mineralogical Museums”, St.Petersburg, 4243. (in Russian).Google Scholar
Frank-Kamenetskaya, O.V. and Rozhdestvenskaya, I.V. (2004) Atomic defects and crystal structure of minerals. St.Petersburg, Yanus, Crystal Chemistry, 33, 187 pp.Google Scholar
Heil, U., Schlitt, S. and Schömer, E. (2009) ADT-3D – a software package for ADT data visualizing and processing, which improves and extends existing Matlab applications especially about 3D algorithms. Institute of Computer Science, Johannes Gutenberg-University of Mainz, Germany.Google Scholar
Kolb, U., Gorelik, T., Kübel, C., Otten, M.T. and Hubert, D. (2007) Towards automated diffraction tomography: Part I – Data acquisition. Ultramicroscopy, 107, 507513.CrossRefGoogle ScholarPubMed
Kolb, U., Gorelik, T. and Otten, M.T. (2008) Towards automated diffraction tomography. Part II - Cell parameter determination. Ultramicroscopy, 108, 763772.CrossRefGoogle ScholarPubMed
Konev, A.A., Vorob'ev, E.I. and Lazebnik, K.A. (1996) Mineralogy of Murunskii Alkaline Massif. Nauchno- Izdatelsky Tsentr Ob'edinennogo Instituta Geologii, Geofiziki, Mineralogii, Siberian Branch of Russian Academy of Science, Novosibirsk, Russia, 221 pp. (in Russian).Google Scholar
Liebau, F. (1985) Structural Chemistry of Silicates. Springer-Verlag, Berlin, Heidelberg, 412 pp.CrossRefGoogle Scholar
Mugnaioli, E., Gorelik, T. and Kolb, U. (2009) ‘Ab initio’ structure solution from electron diffraction data obtained by a combination of Automated Diffraction Tomography and Precession Technique. Ultramicroscopy, 109, 758765.CrossRefGoogle Scholar
NanoMEGAS (2004) Advanced Tools for Electron Diffraction. Available at <http://www.nanomegas.com>..>Google Scholar
Nikishova, L.V., Lazebnik, K.A. and Lazebnik, Yu.D. (1985) About crystallochemical formulae of charoite. Pp. 100105 in: Crystal Chemistry and Structure of Minerals. Nauka, Leningrad, Russia. (in Russian).Google Scholar
Own, C.S. (2005) System design and verification of the precession electron diffraction technique. Ph.D. thesis, Northwestern University, Evanston, Illinois, USA. Available at <http://www.numis.northwestern.edu/Research/Current/precession>..>Google Scholar
Rogova, V.P., Rogov, Yu.P., Drits, V.A. and Kuznetsova, N.N. (1978) Charoite – anew mineral and a new jewelry stone. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 107, 94100. (in Russian).Google Scholar
Rozhdestvenskaya, I.V. and Nikishova, L.V. (2002) Characteristics of Alkali Calcium Silicates from Charoitites. Crystallography Reports, 47, 545554.CrossRefGoogle Scholar
Rozhdestvenskaya, I.V., Kogure, T. and Drits, V.A. (2007) Structural model of charoite. Abstracts of Meeting “Crystal chemistry and X-ray diffraction of Minerals”. Miass, Russia, 4849.Google Scholar
Rozhdestvenskaya, I.V., Kogure, T. and Drits, V.A. (2009 a) Structural model of charoite. Mineralogical Magazine, 73, 883890.CrossRefGoogle Scholar
Rozhdestvenskaya, I., Kolb, U., Mugnaioli, E., Reinholdt, A., Weirich, T., Depmeier, W. and Czank, M. (2009 b) Some news about charoite. Zeitschrift für Kristallographie, Supplement Issue, 29, 103.Google Scholar
Sheldrick, G.M. (1997) SHELXL97. Program for the Refinement of Crystals Structures. University of Göttingen, Göttingen, Germany.Google Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica A, 64, 112122.CrossRefGoogle Scholar
Vincent, R. and Midgley, P.A. (1994) Double conical beam-rocking system for measurement of integrated electron diffraction intensities. Ultramicroscopy, 53, 271282.CrossRefGoogle Scholar
Vorob'ev, E.I. (2008) Charoite (Zorina, L.D., editor). Academy Publishing ‘Geo’, Novosibirsk, Russia, 140 pp. (in Russian).Google Scholar
Supplementary material: File

Rozhdestvenskaya et al. supplementary material

Anisotropic displacement factors

Download Rozhdestvenskaya et al. supplementary material(File)
File 6.4 KB
Supplementary material: File

Rozhdestvenskaya et al. supplementary material

Structure factor data

Download Rozhdestvenskaya et al. supplementary material(File)
File 121.2 KB