Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-29T07:33:01.323Z Has data issue: false hasContentIssue false

Study of the sector structure in adularia by means of optical microscopy, infra-red absorption, and electron microscopy

Published online by Cambridge University Press:  05 July 2018

Mizuhiko Akizuki
Affiliation:
Institute of Mineralogy, Petrology, and Economic Geology, Faculty of Science, Tohoku University, Sendai, 980, Japan
Ichiro Sunagawa
Affiliation:
Institute of Mineralogy, Petrology, and Economic Geology, Faculty of Science, Tohoku University, Sendai, 980, Japan

Summary

Surface microtopography of habit faces, and internal textures of corresponding growth sectors of adularia from the Rhonegletscher, Switzerland, and the Seikoshi mine, Japan, were studied by means of optical polarizing microscopy, reflection interference contrast, electron microscopy, and infra-red absorption spectroscopy. Thin sections parallel to the growth plane were prepared from the specimen whose as-grown face was pasted on a glass slide. Most internal textures seen optically in the thin sections correlated well with the growth patterns for both specimens (fig. 1). Thin foils prepared by ion-thinning from the Rhonegletscher adularia show, under the electron microscope, coexisting heavily cross-hatched areas giving diffuse diffraction spots and homogeneous areas giving sharp diffraction spots. As a whole, adularia from the Seikoshi mine gives more homogeneous and much weaker cross-hatching than the Rhonegletscher specimens. Also, infra-red absorption spectra, which correlate very well with the Al/Si ordering and the optics, show that the {110} growth sector consists of triclinic disordered K-feldspar and the {001} and {01} sectors monoclinic high or low sanidine or orthoclase.

These observations indicate that the characteristic internal textures seen on all optical micrographs are formed during the process of crystal growth, and are not due to monoclinic-triclinic transition. Although the transition process has taken place to a slight extent, the original growth textures remain well preserved throughout geological time. It is suggested from these observations that the degree of Al/Si ordering is mainly controlled by the different rates of growth and the different two-dimensional atomic arrangements exposed on the various growth surfaces. The higher the growth rate the more disordered are the phases that form. The symmetry of the two-dimensional atomic arrangement is kept during growth regardless of the degree of ordering; {001} and {01} growth sectors whose crystal surfaces are parallel to b-axis are monoclinic, and the {110} sector whose surface is inclined to the b-axis is triclinic.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1978

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akizuki, (M.) and Sunagawa, (I.), 1975. Sci. Report, Tohoku Univ., Series III, 13, 67.Google Scholar
Ansilewski, (J.), 1961. Bull. Acad. Polon. Sci. Chem. Geol. Geogr. 6, 275.Google Scholar
Bambauer, (H. U.) and Laves, (F.), 1960. Schweiz. Mineral. Petrogr. Mitt. 40, 177.Google Scholar
Barth, (R. F. W.), 1928. Z. Kristallogr. 68, 473.Google Scholar
Barth, (R. F. W.), 1929. Fortschr. Mineral. 13-14, 185.Google Scholar
Chaisson, (U.), 1950. J. Geol, 58, 537.CrossRefGoogle Scholar
Deer, (W. A.), Howie, (R. A.), and Zussman, (J.), 1963. Rock Forming Minerals, 4. Longmans.Google Scholar
Hafner, (S.) and Laves, (F.), 1957. Z. Kristallogr. 109, 204.CrossRefGoogle Scholar
Köhler, (A.), 1949. Neues Jahrb. Mineral. 1945 8, Abt. A, Monatsch. 49.Google Scholar
Laves, (F.), 1950. J. Geol. 58, 548.CrossRefGoogle Scholar
Laves, (F.), 1952. Ibid. 60, 436.Google Scholar
Mallard, (F.), 1876. Ann. Mines. 10, 187.Google Scholar
Martin, (R. F.), 1968. Ph.D. Thesis, Stanford University.Google Scholar
McConnell, (J. D. C.), 1965. Philos. Mag. 11, 1289.CrossRefGoogle Scholar
Steiner, (A.), 1970. Mineral. Mag. 37, 916.CrossRefGoogle Scholar