Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T23:02:01.515Z Has data issue: false hasContentIssue false

Temperature-dependent disorder in a natural Mg-Al-Fe2+-Fe3+-Spinel

Published online by Cambridge University Press:  05 July 2018

Antonio Della Giusta
Affiliation:
Dipartimento di Mineralogia e Petrologia, Università di Padova, Corso Garibaldi 37, 35122 Padova, Italy
Susanna Carbonin
Affiliation:
Dipartimento di Mineralogia e Petrologia, Università di Padova, Corso Garibaldi 37, 35122 Padova, Italy
Giulio Ottonello
Affiliation:
Dipartimento di Scienze della Terra, Università di Genova, Corso Europa 26, 16132 Genova, Italy

Abstract

A natural Mg-Al-Fe spinel from the Balmuccia peridotite (Italian Western Alps) was annealed at T between 650 and 1150°C, under controlled oxygen activity, and quenched in H2O. Twenty-three cation distributions were calculated from XRD structural refinements in tandem with microprobe analysis, and verified by Mössbauer spectroscopy in the case of unheated samples.

Unheated crystals showed essentially ordered distribution of Fe3+ in octahedral and Fe2+ in tetrahedral sites, the only intracrystalline disorder being represented by ∼0.12 atoms per formula unit of [4]Al and [6]Mg. Thermal runs and quenching maintained substantially ordered distribution of Fe2+ and Fe3+ up to ∼990°C and produced continuous [4]Mg-[6]Al exchange. Between 990 and 1150°C, the previous order of Fe2+-Fe3+ appeared to change slightly, [6]Fe2+ reaching ∼0.04 afu and [6]Mg ≅ [4]Al ≅ 0.24 afu at the highest T. After quenching from this temperature, Fe2+ still resided mainly in the T site. Some previously heated crystals underwent reordering on lowering of the temperature.

Experimental data, integrated with existing literature, enabled cation-oxygen distance in this structure to be improved. Results from annealed samples allowed the formulation of an experimental thermometric function based on Mg-Al intracrystalline disorder.

Type
Mineralogy
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Basso, R., Comin-Chiaramonti, P., Della Giusta, A. and Flora, O. (1984) Crystal chemistry of four Mg-Fe- Al-Cr spinels from the Balmuccia peridotite (Western Italian Alps). Neues Jahrb. Mineral. Abh., 150, 110.Google Scholar
Blessing, R.H., Coppens, P. and Becker, P. (1972) Computer analysis of step-scanned X-ray data. J. Appl. Cryst., 1, 488—92.Google Scholar
Carbonin, S., Russo, U. and Della Giusta, A. (1996) Cation distribution in some natural spinels from X- ray diffraction and Mcjssbauer spectroscopy. Mineral. Mag., 60, 355—68.CrossRefGoogle Scholar
Chen, Y.L., Xu, B.F., Chen, J.G. and Ge, Y.Y. (1992) Fe2+-Fe3+ ordered distribution in chromite spinels. Phys. Chem. Miner., 19, 255—9.CrossRefGoogle Scholar
Comin-Chiaramonti, P., Demarchi, G., Siena, F. and Sinigoi, S. (1982) Relazioni tra fusione e deforma- zione nella peridotite di Balmuccia (Ivrea-Verbano). Rend. Soc. Ital. Mineral. Petrol, 38, 685—700.Google Scholar
Cynn, H., Anderson, O.L. and Nicol, H. (1993) Effects of cation ordering in a natural MgAl2O4 spinel observed by rectangular parallelepiped ultrasonic resonance and Raman measurements. Pure Appl. Geophys.y 141, 415—44.CrossRefGoogle Scholar
Della Giusta, A. and Ottonello, G. (1993) Energy and long-range disorder in simple spinels. Phys. Chem. Miner., 20, 228-41.CrossRefGoogle Scholar
Della Giusta, A., Princivalle, F. and Carbonin, S. (1986) Crystal chemistry of a suite of natural Cr-bearing spinels with 0.15 < Cr < 1.07. Neues Jahrb. Mineral. Abh., 155, 319-30.Google Scholar
Della Giusta, A., Princivalle, F. and Carbonin, S. (1987) Crystal structure and cation distribution in some natural magnetites. Mineral. Petrol., 37, 315—21.CrossRefGoogle Scholar
Gasparik, T. and Newton, R.C. (1984) The reversed alumina contents of orthopyroxene in equilibrium with spinel and forsterite in the system MgO-Al2O3- SiO2- Contrib. Mineral. Petrol., 85, 186—96.CrossRefGoogle Scholar
Grimes, N.W., Thompson, P. and Kay, H.F. (1982) New symmetry and structure for spinel. Proc. Royal Soc. London A386, 333—45.Google Scholar
Hafner, S. (1960) Metalloxyde mit Spinellstruktur. Schw. Miner. Petr. Mitt., 40, 208—40.Google Scholar
Hill, R.J., Craig, J.R. and Gibbs, G.V. (1979) Systematics of the spinel structure type. Phys. Chem. Mineral, 4, 317—39.CrossRefGoogle Scholar
Irvine, T.N. (1965) Chromian spinel as a petrogenetic indicator. Part 1. Theory. Canad. J. Earth Sci., 2, 648-72.CrossRefGoogle Scholar
James, F. and Roos, M. (1975) MINUIT, A system for function minimization and analysis of the parameters errors and correlations. Comp. Phys. Comm., 10, 343-67.CrossRefGoogle Scholar
Larsson, L. (1995) Temperature dependent cation distribution in a natural MgO.4FeO.6Al2O4 spinel. Neues Jahrb. Mineral. Mh., 173—84.Google Scholar
Larsson, L., O'Neill, H.St.C. and Annersten, H. (1994) Crystal chemistry of synthetic hercynite (FeAl2O4) from XRD structural refinements and Mossbauer spectroscopy. Eur. J. Mineral., 6, 39—51.CrossRefGoogle Scholar
Lucchesi, S. and Della Giusta, A. (1994) Crystal chemistry of non-stoichiometric Mg-Al synthetic spinels. Zeit. Kristallogr., 209, 714—9.Google Scholar
Millard, R.L., Peterson, R.C. and Hunter, B.K. (1992) Temperature dependence of cation disorder in MgAl204 spinel using 27A1 and lvO magic-angle spinning NMR. Amer. Mineral, 77, 44—52.Google Scholar
Navrotsky, A. and Kleppa, O.J. (1967) The thermodynamics of cation distribution in simple spinels. J. Inorg. Nucl. Chemistry, 29, 2701—14.CrossRefGoogle Scholar
Nell, J., Wood, B.J. and Mason, T.O. (1989) High temperature cation distributions in Fe304 - MgAl2O4 -MgFe2O4 - FeAl2O4 spinels from thermopower and conductivity measurements. Amer. Mineral., 74, 339-51,Google Scholar
North, A.C.T., Phillips, D.C. and Scott-Mattews, F. (1968) A semi-empirical method of absorption correction. Acta Cryst. A24, 351—2.CrossRefGoogle Scholar
O'Neill, H.St.C. (1992) Temperature dependence of the cation distribution in zinc ferrite (ZnFe2O4) from powder XRD structural refinements. Eur. J. Mineral., 4, 571—80.CrossRefGoogle Scholar
O'Neill, H.St.C. and Dollase, W.A. (1993) Crystal structures and cation distributions in simple spinels from powder XRD structural refinements: MgCr204, ZnCr204, Fe304 and the temperature dependence of the cation distribution in ZnAl2O4- Phys. Chem. Miner., 20, 541—55.CrossRefGoogle Scholar
O'Neill, H.St.C. and Navrotsky, A. (1983) Simple spinels: crystallographic parameters, cation radii, lattice energies, and cation distribution. Amer. Mineral, 68, 181—94.Google Scholar
O'Neill, H.St.C. and Navrotsky, A. (1984) Cation distribution and thermodynamic properties of binary spinel solid solutions. Amer. Mineral., 69, 733—53.Google Scholar
O'Neill, H.St.C., Dollase, W.A. and Ross, C.R. II (1991) Temperature dependence of the cation distribution in Nickel Aluminate (NiAl2O4) spinel: a powder XRD study. Phys. Chem. Miner., 18, 302—19.CrossRefGoogle Scholar
O'Neill, H.St.C., Annersten, H. and Virgo, D. (1992) The temperature dependence of the cation distribution in magnesioferrite (MgFe2O4) from powder XRD structural refinements and Mossbauer spectroscopy. Amer. Mineral, 77, 725—40.Google Scholar
Osborne, M.D., Fleet, M.E. and Bancroft, G.M. (1981) Fe2+-Fe3+ ordering in chromite and Cr-bearing spinels. Contrib. Mineral. Petrol., 77, 251—5.CrossRefGoogle Scholar
Ottonello, G. (1986) Energetics of multiple oxides with spinel structure. Phys. Chem. Miner., 13, 79—90.CrossRefGoogle Scholar
Peterson, R.C., Lager, G.A. and Hitterman, R.L. (1991) A time-of-flight neutron powder diffraction study of MgAl2O4 at temperatures up to 1273 K. Amer. Mineral, 76, 1455-8.Google Scholar
Petrie, A. and Jacob, K.T. (1982) Thermodynamic properties of Fe304 - FeV204 and Fe304 - FeCr2O4 spinel solid solutions. J. Amer. Ceramic Soc., 65, 117-23.CrossRefGoogle Scholar
Pizzolon, M. (1991) Cristallochimica e modellizzazione di spinelli di Mg-Al-Fe-Cr. Thesis, University of Padova, Padova, Italy.Google Scholar
Princivalle, F., Della Giusta, A. and Carbonin, S. (1989) Comparative crystal chemistry of spinels from some suites of ultramafic rocks. Mineral. Petrol, 40, 117-26.CrossRefGoogle Scholar
Raudsepp, M., Hawthorne, F.C. and Tumock, A.C. (1990) Evaluation of the Rietveld method for the characterization of fine-grained products of mineral synthesis: the diopside-hedenbergite join. Canad. Mineral, 28, 93109.Google Scholar
Rieck, G.D. and Driessens, F.C.M. (1966) The structure of manganese-iron-oxygen spinels. Acta Cryst.y 20, 521-5.CrossRefGoogle Scholar
Sack, R.O. (1982) Spinels as petrogenetic indicators: activity-composition relations at low pressure. Contrib. Mineral. Petrol; 79, 169—86.CrossRefGoogle Scholar
Sack, R.O. and Ghiorso, M.S. (1991a) Chromian spinels as petrogenetic indicators: thermodynamics and petrological applications. Amer. Mineral., 76, 827-47.Google Scholar
Sack, R.O. and Ghiorso, M.S. (1991b) An internally consistent model for the thermodynamic properties of Fe-Mg-titanomagnetite-aluminate spinels. Contrib. Mineral. Petrol., 106, 474—505.CrossRefGoogle Scholar
Sheldrick, G.M. (1993) SHELX-93. Program for crystal structure refinement. University of Gottingen, Germany.Google Scholar
Schmocker, U. and Waldner, F. (1976) The inversion parameter with respect to space group of MgAl2O4 spinels. J. Phys., C: Solid State Physics, 9, L235—7.CrossRefGoogle Scholar
Trestman-Matts, A., Dorris, S.E., Kumarakrishnan, S. and Mason, T.O. (1983) Thermoelectric determination of cation distributions in Fe3O4-Fe2TiO4. J. Amer. Ceramic Soc., 66, 829—34.CrossRefGoogle Scholar
Tsirerson, V.G., Belokoneva, Ye. L., Nozik, Yu. Z. and Urusov, V.S. (1987) Precision X-ray diffraction data on the structure of MgAl2O4 spinel. Geochem. Intern., 24(2), 124-30.Google Scholar
Urusov, V.S. (1983) Interaction of cations on octahedral and tetrahedral sites in simple spinels. Phys. Chem. Mineral., 9, 1—5. CrossRefGoogle Scholar
Waerenborgh, J.C., Figueiredo, M.O., Cabral, J.M.P. and Pereira, I.C.J. (1994) Powder XRD structure refinements and 57Fe Mossbauer effect study of synthetic Zni-xFexAl2O4 (O < x 1) spinels annealed at different temperatures. Phys. Chem. Miner., 21, 460—8.CrossRefGoogle Scholar
Wu, C.C. and Mason, T.O. (1981) Thermopower measurement of cation distribution in magnetite. J. Amer. Ceramic Soc., 64, 520—2.CrossRefGoogle Scholar
Yamanaka, T. and Takeuchi, Y. (1983) Order-disorder transition in MgAl2O4 spinel at high temperatures up to 1700°C. Zeit. KristalL, 165, 6578.CrossRefGoogle Scholar
Young, R.A. (1995) Introduction to the Rietveld method. In The Rietveld Method (Young, R.A., ed.). International Union of Crystallography, Oxford University Press Inc., New York, pp. 1—38.Google Scholar