Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-07T11:21:59.591Z Has data issue: false hasContentIssue false

Thermal aspects of the origin of Hebridean Tertiary acid magmas. I. An experimental study of partial fusion of Lewisian gneisses and Torridonian sediments

Published online by Cambridge University Press:  05 July 2018

R. N. Thompson*
Affiliation:
Department of Geology, Imperial College of Science and Technology, London SW7 2BP

Abstract

Thermal aspects of the conflicting hypotheses that the acid magmas of the British Tertiary Igneous Province were generated by either fractional crystallization of basic magmas or partial fusion of country rocks around basic intrusions are investigated by combining petrological and experimental data. Sparse large xenoliths (up to 12 m2 outcrops) of Lewisian gneiss occur in the ferrodiorite member of the Marscoite Suite in the Western Redhills Eocene intrusive complex of Skye. Most of the blocks are of granodioritic-tonalitic gneiss which is very similar to the grey gneisses of the northern and southern regions of the mainland Lewisian. One is a two-pyroxene basic granulite, closely resembling in petrography and composition the granulite-facies basic gneisses of the central region of the Scottish mainland Lewisian. During Tertiary thermal metamorphism the xenoliths recrystallized patchily to pyroxene hornfelses and up to 50% of melting occurred in any parts of blocks that were rich in alkali feldspar and quartz. Microprobe analyses of intergrown Ca-rich and Ca-poor pyroxenes in a hornfelsed ultramafic mica pyroxenite lens within a leucogneiss block give a calculated temperature of 950 °C for the Tertiary metamorphism. Melting experiments at 1 kb PH2O were carried out on leucocratic and mesocratic Lewisian gneisses (from the xenoliths), Torridonian arkose and shale. Extensive melting of the leucogneiss and arkose, to peraluminous liquids, occurs within a few degrees above their solidus (715 °C). The silicate liquidus of the leucogneiss is at 930 °C. Microprobe analyses of the glass products of melting experiments (mostly of leucogneiss) show that liquid composition trends during progressive melting are consistent with theoretical equilibria in the synthetic system Ab-Or-An-Qz-H2O. Partial fusion in the Skye Lewisian gneiss xenoliths took place at a water vapour pressure of a few hundred bars, probably under water-undersaturated conditions.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bell, J. D. (1976). Proc. Geol. Assoc. 87, 247-71.CrossRefGoogle Scholar
Brown, G. C. and Fyfe, W. S. (1972). Proc. 24th Int. Geol. Cong., Section 2, 27-34.Google Scholar
Brown, G. M. (1956). Phil. Trans. R. Soc. (Lond.) B240, 1-53.Google Scholar
Brown, G. M. (1963). Mineral. Mag. 33, 533-62.Google Scholar
Butler, B. C. M. (1961). Ibid. 32, 866-97.Google Scholar
Carter, S. R., Evensen, N. M., Hamilton, P. J., and O'Nions, R. K. (1978). Science, 202, 743-7.CrossRefGoogle Scholar
Dunham, A. C. (1967). Q. J. Geol. Soc. Lond. 123, 327-52.CrossRefGoogle Scholar
Dunham, A. C. (1970). Geol. J. Spec. Issue, 2, 23-32.Google Scholar
Hamilton, P. J., Evensen, N. M., O'Nions, R. K., and Tarney, J. (1979). Nature, 277, 25-8.CrossRefGoogle Scholar
Holland, J. G. and Lambert, R. StJ. (1972). Geol. Mag. 109, 339-47.CrossRefGoogle Scholar
James, R. S. and Hamilton, D. L. (1969). Contrib. Mineral. Petrol. 21, 111-41.CrossRefGoogle Scholar
Luth, W. C. (1976). In Bailey, D. K. and Macdonald, R. (eds.), The Evolution of the Crystalline Rocks. Academic Press, London.Google Scholar
Lyon, T. D. B., Pidgeon, R. T., Bowes, D. R., and Hopgood, A. M. (1973). J. Geol. Soc. Lond. 129, 389-404.CrossRefGoogle Scholar
Meighan, I. G. (1979). Bull. Geol. Surv. G.B. 70, 10-22.Google Scholar
Moorbath, S. and Bell, J. D. (1965). J. Petrol. 6, 37-66.CrossRefGoogle Scholar
Moorbath, S., Stewart, A. D., Lawson, D. E., and Williams, G. E. (1967). Scott. J. Geol. 3, 389-412.CrossRefGoogle Scholar
Moorbath, S. and Thompson, R. N. (1980). J. Petrol. 21, 295-321.CrossRefGoogle Scholar
Moorbath, S. and Welke, H. (1969). Earth Planet. Sci. Lett. 5, 217-30.CrossRefGoogle Scholar
Piwinskii, A. J. (1967). Ibid. 2, 161-2.Google Scholar
Piwinskii, A. J. (1968). J. Geol. 76, 548-70.CrossRefGoogle Scholar
Sheraton, J. W., Skinner, A. C., and Tarney, J. (1973). In Park, R. G. and Tarney, J. (eds.), The Early Precambrian of Scotland and Related Rocks of Greenland. University of Keele.Google Scholar
Stewart, F. H. (1965). In Craig, G. Y. (ed.), The Geology of Scotland. Oliver and Boyd, Edinburgh.Google Scholar
Thompson, R. N. (1969). Q. J. Geol. Soc. Lond. 124, 349-85.CrossRefGoogle Scholar
Thompson, R. N. (1974). Contrib. Mineral. Petrol. 45, 317-41.CrossRefGoogle Scholar
Thompson, R. N. and Dunham, A. C. (1969). Earth Planet. Sci. Lett. 6, 161-4.CrossRefGoogle Scholar
Thompson, R. N. and MacKenzie, W. S. (1967). Am. J. Sci. 265, 714-34.CrossRefGoogle Scholar
Thorpe, R. S., Potts, P. J., and Sarre, M. B. (1977). Earth Planet. Sci. Lett. 36, 111-20.CrossRefGoogle Scholar
Tilley, C. E. (1944). Geol. Mag. 81, 129-31.CrossRefGoogle Scholar
Tuttle, O. F. and Bowen, N. L. (1958). Mem. Geol. Soc. Am. 74, 1-153.Google Scholar
Wager, L. R., Vincent, E. A., Brown, G. M., and Bell, J. D. (1965). Phil. Trans. R. Soc. (Lond.) A257, 273-307.Google Scholar
Walsh, J. N., Beckinsale, R. D., Skelhorn, R. R., and Thorpe, R. S. (1979). Contrib. Mineral. Petrol. 71, 99-116.CrossRefGoogle Scholar
Weitl, D. F. and Kudo, A. H. (1968). Geol. Mag. 105, 325-37.Google Scholar
Wells, P. R. A. (1977). Contrib. Mineral. Petrol. 62, 129-39.CrossRefGoogle Scholar
Williams, D. W. (1968). Am. Mineral. 53, 1765-9.Google Scholar
Wood, B. J. (1975). Earth Planet. Sci. Lett. 26, 299-311.CrossRefGoogle Scholar
Wyllie, P. J. (1961). J. Petrol. 2, 1-37.CrossRefGoogle Scholar
Wyllie, P. J., Cox, K. G. and Biggar, G. M. (1962). J. Petrol. 3, 238-43.CrossRefGoogle Scholar
Wyllie, P. J., Huang, W.-L., Stem, C. R., and Maaloe, S. (1976). Canad. J. Earth Sci. 13, 1007-19.CrossRefGoogle Scholar