Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-28T23:14:11.169Z Has data issue: false hasContentIssue false

Thermal expansion behaviour of beryllonite [Na(BePO4)] and trimerite [CaMn(BeSiO4)3]

Published online by Cambridge University Press:  05 July 2018

C. M. B. Henderson
Affiliation:
Department of Geology, The University, Manchester M13 9PL
D. Taylor
Affiliation:
Department of Geology, The University, Manchester M13 9PL

Abstract

The thermal expansions of trimerite and beryllonite have been determined up to 800°C. No anomalies were observed in the thermal expansion curves but the expansion coefficients for beryllonite are approximately twice those of trimerite. The thermal expansion behaviour of the minerals is interpreted in terms of a tetrahedral tilting model with the main change in apparent tilting being about the monoclinic 010 plane, i.e. the 0001 pseudo-hexagonal plane.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Present address: 15 Leigh Road, Congleton, Cheshire CW12 2EG.

References

Chung, S. J. (1972) Dissertation, T. H. Aachen.Google Scholar
Ferry, J. M., and Blencoe, J. G. (1978) Am. Mineral. 63, 1225-40.Google Scholar
Giuseppetti, G., and Tadini, C. (1973) Tschermaks Mineral. Petrog. Mitt. 20, 1-12.CrossRefGoogle Scholar
Glidewell, C. (1977) Inorg. Nucl. Chem. Lett. 13, 65-8.CrossRefGoogle Scholar
Golovastikov, N. I. (1962) Sov. Phys. Crystallogr. 6, 733-9.Google Scholar
Gossner, B., and Besslein, J. (1934) Zentralbl. Mineral. Geo., Abt. A, 141-51.Google Scholar
Henderson, C. M. B., and Taylor, D. (1975) Trans. J. Br. Ceram. Soc. 74, 55-7.Google Scholar
Henderson, C. M. B., and Taylor, D. (1979) Mineral. Mag. 43, 429-31.CrossRefGoogle Scholar
Henderson, C. M. B., and Taylor, D. (1982) Ibid. 45, 111-27.Google Scholar
Kihara, K. (1978) Z. Kristallogr. 148, 237-53.CrossRefGoogle Scholar
Klaska, K.-H. (1974) Dissertation, Hamburg.Google Scholar
Klaska, K.-H. and Jarchow, O. (1977) Z. Kristallogr. 145, 4665.CrossRefGoogle Scholar
Klaska, R. (1977) Dissertation, Hamburg.Google Scholar
Klaska, R. and Jarchow, O. (1975) Z. Kristallogr. 142, 225-38.Google Scholar
Megaw, H. D. (1973) Crystal Structures: a Working Approach. Philadelphia: W. B. Saunders Co.Google Scholar
Moore, P. B., and Ribbe, P. H. (1965) Am. Mineral. 50, 1170-8.Google Scholar
Ng, H. N., and Calvo, C. (1976) Can. J. Phys. 54, 638-47.CrossRefGoogle Scholar
Ng, H. N., and Calvo, C. (1977) Ibid. 55, 677-83.Google Scholar
O’Keeffe, M., and Hyde, B. G. (1978) Acta Crystallogr. B34, 2732.CrossRefGoogle Scholar
Palache, C., Frondel, C., and Berman, H. (1951) Dana's System of Mineralogy. 2, 7th edn. John Wiley.Google Scholar
Schneider, H., Florke, O. W., and Majdic, A. (1979) Proc. Br. Ceram. Soc. 28, 267-79.Google Scholar
Schultz, E., and Liebau, F. (1981) Z. Kristallogr. 154, 115-26.Google Scholar
Smith, D. K. (1968) Norelco Reporter, 15, 57-65, 76.Google Scholar
Smith, J. V., and Tuttle, O. F. (1957) Am. J. Sci. 255, 282305.CrossRefGoogle Scholar
Taylor, D. (1938) Mineral. Mag. 47, 319-26.CrossRefGoogle Scholar
Taylor, D. (1984) Ibid. 48, 65-79.Google Scholar
Young, R. A. (1962) Defence Documentation Center, Washington, Rept. No. AD 276235, 156 pp.Google Scholar