Published online by Cambridge University Press: 05 July 2018
Lepidomelane, an iron-rich biotite, was heated in air or in vacuum, or by electron bombardment, and the processes of dehydration and transformation were studied by means of X-ray diffractometry, optical microscopy, and electron microscopy. By heat treatment, vacancies are at first formed by the evaporation of water molecules and alkali ions, and they move and condense to form holes, which act as preferential nucleation sites for new phases. Other preferential sites are edges of exposed silicate sheets along microcracks, and these are decorated by a newly formed maghemite- like mineral whose a is 10.20 Å (on a hexagonal cell), so that the sites can be clearly seen even under the reflection microscope. By heating at higher temperatures or prolonged heating, various phases, olivine, hematite, magnetite, and leucite are formed, depending upon the conditions of dehydration.