Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-10T06:15:32.134Z Has data issue: false hasContentIssue false

Thermessaite-(NH4), (NH4)2AlF3(SO4), a new fumarole mineral from La Fossa crater at Vulcano, Aeolian Islands, Italy

Published online by Cambridge University Press:  01 September 2021

Anna Garavelli*
Affiliation:
Dipartimento di Scienze della Terra e Geoambientali, Università di Bari, via E. Orabona 4, I-70125Bari, Italy Centro Interdipartimentale “Laboratorio di Ricerca per la Diagnostica dei Beni Culturali”, Università di Bari, via E. Orabona 4, I-70125Bari, Italy
Daniela Pinto
Affiliation:
Dipartimento di Scienze della Terra e Geoambientali, Università di Bari, via E. Orabona 4, I-70125Bari, Italy Centro Interdipartimentale “Laboratorio di Ricerca per la Diagnostica dei Beni Culturali”, Università di Bari, via E. Orabona 4, I-70125Bari, Italy
Donatella Mitolo
Affiliation:
Autorità di Bacino Distrettuale dell'Appennino Meridionale Sede Puglia, Str. Prov. Per Casamassima km 3, I-70010Valenzano (BA), Italy
Uwe Kolitsch
Affiliation:
Mineralogisch-Petrographische Abt., Naturhistorisches Museum, Burgring 7, A-1010Wien, Austria Institut für Mineralogie und Kristallographie, Universität Wien, Althanstrasse 14, A-1090Wien, Austria
*
*Author for correspondence: Anna Garavelli, Email: anna.garavelli@uniba.it

Abstract

Thermessaite-(NH4), ideally (NH4)2AlF3(SO4), is a new mineral found as a medium- to high-temperature (~250–300°C) fumarole encrustation at the rim of La Fossa crater, Vulcano, Aeolian Islands, Italy. The mineral deposited as aggregates of minute (<0.2 mm) sharp prismatic crystals on the surface of a pyroclastic breccia in association with thermessaite, sulfur, arcanite, mascagnite, and intermediate members of the arcanite–mascagnite series.

The new mineral is colourless to white, transparent, non-fluorescent, has a vitreous lustre, and a white streak. The calculated density is 2.185 g/cm3. Thermessaite-(NH4) is orthorhombic, space group Pbcn, with a = 11.3005(3) Å, b = 8.6125(3) Å, c = 6.8501(2) Å, V = 666.69(4) Å3 and Z = 4. The eight strongest reflections in the powder X-ray diffraction data [d in Å (I)(hkl)] are: 5.65 (100)(200), 4.84 (89)(111), 6.85 (74)(110), 3.06 (56)(112), 3.06 (53)(221), 3.08 (47)(311), 2.68 (28)(022) and 2.78 (26)(130). The average chemical composition, determined by quantitative SEM-EDS (N by difference), is (wt.%): K2O 3.38, Al2O3 25.35, SO3 36.58, F 26.12, (NH4)2O 22.47, O = F –11.00, total 102.90. The empirical chemical formula, calculated on the basis of 7 anions per formula unit, is [(NH4)1.85K0.15]Σ2.00Al1.06F2.94S0.98O3.06. The crystal structure, determined from single-crystal X-ray diffraction data [R(F) = 0.0367], is characterised by corner-sharing AlF4O2 octahedra which form [001] octahedral chains by sharing two trans fluoride atoms [Al–F2 = 1.8394(6) Å]. Non-bridging Al–F1 distances are shorter [1.756(1) Å]. The two trans oxygen atoms [Al–O = 1.920(2) Å] are from SO4 tetrahedra. NH4+ ions occur in layers parallel to (100) which alternate regularly with (100) layers containing ribbons of corner-sharing AlF4O2 octahedra and associated SO4 groups. The NH4+ ions are surrounded by five oxygen atoms and by four fluorine atoms. The mineral is named as the (NH4)-analogue of thermessaite, K2AlF3(SO4), and corresponds to an anthropogenic phase found in the burning Anna I coal dump of the Anna mine, Aachen, Germany. Both mineral and mineral name have been approved by the International Mineralogical Association Commission on New Minerals, Nomenclature and Classification (IMA2011-077).

Type
Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Anthony R Kampf

References

Acquafredda, P. and Paglionico, A. (2004) SEM-EDS microanalyses of microphenocrysts of Mediterranean obsidians: a preliminary approach to source discrimination. European Journal of Mineralogy, 16, 419429.CrossRefGoogle Scholar
Africano, F. and Bernard, A. (2000) Acid alteration in the fumarolic environment of Usu volcano, Hokkaido, Japan. Journal of Volcanology and Geothermal Research, 97, 475495.CrossRefGoogle Scholar
Balić-Žunić, T., Garavelli, A., Jakobsson, S.P., Jonasson, K., Katerinopoulos, A., Kyriakopoulos, K. and Acquafredda, P. (2016) Fumarolic minerals: an overview of active European volcanoes. In: Updates in Volcanology – From Volcano Modelling to Volcano Geology (Dr.Nemeth, Karoly, editor). InTech, London. https:doi.org/10.5772/64129. Available from: http://www.intechopen.com/books/updates-in-volcanology-from-volcano-modelling-to-volcano-geology/fumarolic-minerals-an-overview-of-active-european-volcanoes.Google Scholar
Balić-Žunić, T., Garavelli, A. and Mitolo, D. (2018 a) Topsøeite, FeF3(H2O)3, a new fumarolic mineral from the Hekla volcano, Iceland. European Journal of Mineralogy, 30, 841848.CrossRefGoogle Scholar
Balić-Žunić, T., Garavelli, A., Pinto, D. and Mitolo, D. (2018 b) Verneite, Na2Ca3Al2F14, a new aluminum fluoride mineral from Icelandic and Vesuvius fumaroles. Minerals, 8, 553, doi: 10.3390/min8120553.CrossRefGoogle Scholar
Blessing, R.H. (1995) An empirical correction for absorption anisotropy. Acta Crystallographica, A51, 3338.CrossRefGoogle Scholar
Borodaev, Y.S., Garavelli, A., Kuzmina, O.V., Mozgova, N.N., Organova, N.I., Trubkin, N.V. and Vurro, F. (1998) Rare sulfosalts from Vulcano, Aeolian Islands, Italy. I. Se-bearing kirkiite, Pb10(Bi,As)6(S,Se)19. The Canadian Mineralogist, 36, 11051114.Google Scholar
Borodaev, Y.S., Garavelli, A., Garbarino, C, Grillo, S.M., Mozgova, N.N., Organova, N.I., Trubkin, N.V. and Vurro, F. (2000) Rare sulfosalts from Vulcano, Aelian Islands, Italy. III. Wittite and Cannizzarite. The Canadian Mineralogist, 38, 2334.CrossRefGoogle Scholar
Borodaev, Y.S., Garavelli, A., Garbarino, C., Grillo, S.M., Mozgova, N.N., Uspenskaya, T.Y. and Vurro, F. (2001) Rare sulfosalts from Vulcano, Aeolian Islands, Italy. IV. Lillianite. The Canadian Mineralogist, 39, 12031215.CrossRefGoogle Scholar
Borodaev, Y.S., Garavelli, A., Garbarino, C., Grillo, S.M., Mozgova, N.N., Paar, W.H., Topa, D. and Vurro, F. (2003) Rare sulfosalts from Vulcano, Aeolian Islands, Italy. V. Selenian heyrovskýite. The Canadian Mineralogist, 41, 429440.CrossRefGoogle Scholar
Bruker, (2003a) SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.Google Scholar
Bruker, (2003b) SAINT-IRIX , Bruker AXS Inc., Madison, Wisconsin, USA.Google Scholar
Campostrini, I., Demartin, F., Gramaccioli, C.M. and Russo, M. (2011) Vulcano: tre secoli di mineralogia. Associazione Micro-mineralogica Italiana, Cremona, Italy [in Italian].Google Scholar
Cheynet, B., Dall'aglio, M., Garavelli, A., Grasso, M.F. and Vurro, F. (2000) Trace elements from fumaroles at Vulcano Island, Italy: rates of transport and a thermochemical model. Journal of Volcanology and Geothermal Research, 95, 273283.CrossRefGoogle Scholar
Coradossi, N., Garavelli, A., Salamida, M. and Vurro, F. (1996) Evolution of Br/Cl ratios in fumarolic salammoniac from Vulcano (Aeolian Islands, Italy). Bulletin of Volcanology, 58, 310316.CrossRefGoogle Scholar
Demartin, F., Gramaccioli, C.M., Campostrini, I. and Orlandi, P. (2008) Thermessaite, K2[AlF3|SO4], a new ino-aluminofluoride-sulfate from La Fossa crater, Vulcano, Aeolian Islands, Italy. The Canadian Mineralogist, 46, 693700.CrossRefGoogle Scholar
Demartin, F., Campostrini, I. and Gramaccioli, C.M. (2009a) Panichiite, natural ammonium hexachlorostannate(IV), (NH4)2SnCl6, from La Fossa crater, Vulcano, Aeolian Islands, Italy. The Canadian Mineralogist 47, 367372.CrossRefGoogle Scholar
Demartin, F., Gramaccioli, C.M. and Campostrini, I. (2009b) Brontesite, (NH4)3PbCl5, a new product of fumarolic activity from La Fossa crater, Vulcano, Aeolian Islands, Italy. The Canadian Mineralogist, 47, 12371243.CrossRefGoogle Scholar
Demartin, F., Campostrini, I., Castellano, C. and Gramaccioli, C.M. (2012) Argesite, (NH4)7Bi3Cl16, a new mineral from La Fossa Crater, Vulcano, Aeolian Islands, Italy. A first example of the [Bi2Cl10]4- anion. American Mineralogist, 97, 14461451.CrossRefGoogle Scholar
Ferrara, G., Garavelli, A., Pinarelli, L. and Vurro, F. (1995) Lead isotope composition of the sublimates from the fumaroles of Vulcano (Aeolian Islands, Italy): inferences on the deep fluid circulation. Bulletin of Volcanology, 56, 621625.CrossRefGoogle Scholar
Garavelli, A. (1994) Mineralogia e geochimica di fasi vulcaniche condensate: i sublimati dell'isola di Vulcano tra il 1990 ed il 1993. PhD dissertation, University of Bari, Italy [in Italian].Google Scholar
Garavelli, A. and Vurro, F. (1994) Barberiite, NH4BF4, a new mineral from Vulcano, Aeolian Islands, Italy. American Mineralogist, 79, 381384.Google Scholar
Garavelli, A., Laviano, R. and Vurro, F. (1997) Sublimate deposition from hydrothermal fluids at the Fossa crater, Vulcano, Italy. European Journal of Mineralogy, 9, 423432.CrossRefGoogle Scholar
Garavelli, A., Pinto, D. and Vurro, F. (2003) Mineralogy of sublimates and fumarole incrustations at Vulcano Island, Italy. Pp. 89100 in: Incontri scientifici Special Issue (Fiore, S., editor), IMAA-CNR, Italy.Google Scholar
Garavelli, A., Mozgov, N.N., Orlandi, P., Bonaccorsi, E., Pinto, D., Moëlo, Y. and Borodaev, Y. (2005) Rare sulfosalts from Vulcano, Aeolian Islands, Italy. VI. Vurroite, Pb20Sn2(Bi,As)22S54Cl6, a new mineral species. The Canadian Mineralogist, 43, 703711.CrossRefGoogle Scholar
Garavelli, A., Mitolo, D. and Pinto, D. (2012) Thermessaite-(NH4), IMA 2011-077. CNMNC Newsletter No. 12, February 2012; page 152; Mineralogical Magazine, 76, 151155.Google Scholar
Garavelli, A., Mitolo, D., Pinto, D. and Vurro, F. (2013) Lucabindiite, (K,NH4)As4O6(Cl,Br), a new fumarole mineral from the “La Fossa” crater at Vulcano, Aeolian Islands, Italy. American Mineralogist, 98, 470477.CrossRefGoogle Scholar
Garavelli, A., Pinto, D., Mitolo, D., Bindi, L. (2014) Leguernite, Bi12.67O14(SO4)5, a new Bi oxysulfate from the fumarole deposit of La Fossa crater, Vulcano, Aeolian Islands, Italy. Mineralogical Magazine, 78, 16291645.CrossRefGoogle Scholar
Getahun, A., Reed, M.H. and Symonds, R. (1996) Mount St. Augustine volcano fumarole wall rock alteration: Mineralogy, zoning, composition and numerical models of its formation process. Journal of Volcanology and Geothermal Research, 71, 73107.CrossRefGoogle Scholar
Ibers, J.A. and Hamilton, W.C. (1974) International Tables for X-ray Crystallography, Volume 4. The Kynoch Press, Birmingham, UK.Google Scholar
Jacobsen, M.J., Balić-Žunić, T., Mitolo, D., Katerinopoulou, A., Garavelli, A. and Jakobsson, S.P. (2014) Oskarssonite, AlF3, a new fumarolic mineral from Eldfell volcano, Heimaey, Iceland. Mineralogical Magazine, 78, 215222.CrossRefGoogle Scholar
Mandarino, J.A. (1976) The Gladstone-Dale relationship – Part I: Derivation of new constants. The Canadian Mineralogist, 14, 498502.Google Scholar
Mandarino, J.A. (1981) The Gladstone-Dale relationship. IV. The compatibility index and its application. The Canadian Mineralogist, 19, 441450.Google Scholar
Mitolo, D., Pinto, D., Garavelli, A., Bindi, L. and Vurro, F. (2009) The role of the minor substitutions in the crystal structure of natural challacolloite, KPb2Cl5, and hephaistosite, TlPb2Cl5, from Vulcano (Aeolian Archipelago, Italy). Mineralogy and Petrology, 96, 121128.CrossRefGoogle Scholar
Mitolo, D., Capitani, G.C., Garavelli, A. and Pinto, D. (2011) Transmission electron microscopy investigation of Ag-free lillianite and heyrovskýite from Vulcano, Aeolian Islands, Italy. American Mineralogist, 96, 288300.CrossRefGoogle Scholar
Mitolo, D., Demartin, F., Garavelli, A., Campostrini, I., Pinto, D., Gramaccioli, C.M., Acquafredda, P. and Kolitsch, U. (2013) Adranosite-(Fe), (NH4)4NaFe2(SO4)4Cl(OH)2, a new ammonium sulfate chloride from La Fossa crater, Vulcano, Aeolian Islands, Italy. American Mineralogist, 51, 5766.CrossRefGoogle Scholar
Mizutani, Y. and Sugiura, T. (1996) The chemical equilibrium of the SO2 + 2H2S ↔ 3S + 2H2O reaction in solfataras of the Nasudake Volcano. Bulletin of the Chemical Society of Japan, 39, 24112414.CrossRefGoogle Scholar
Oskarsson, N. (1981) The chemistry of Icelandic lava incrustations and the latest stage of degassing. Journal of Volcanology and Geothermal Research, 10, 93111.CrossRefGoogle Scholar
Pinto, D., Balić-Žunić, T., Garavelli, A., Makovicky, E. and Vurro, F. (2006a) Comparative crystal-structure study of Ag-free lillianite and galenobismutite from Vulcano, Aeolian Islands, Italy. The Canadian Mineralogist, 44, 159175.CrossRefGoogle Scholar
Pinto, D., Balić-Žunić, T., Garavelli, A., Garbarino, C., Makovicky, E. and Vurro, F. (2006b) First occurrence of close-to-ideal kirkiite at Vulcano (Aeolian Islands, Italy): chemical data and single-crystal X-ray study. European Journal of Mineralogy, 18, 393401.CrossRefGoogle Scholar
Pinto, D., Balić-Žunić, T., Bonaccorsi, E., Borodaev, Y.S., Garavelli, A., Garbarino, C., Makovicky, E., Mozgova, N.N. and Vurro, F. (2006c) Rare sulfosalts from Vulcano, Aeolian Islands, Italy. VII. Cl-bearing galenobismutite. The Canadian Mineralogist, 44, 443457.CrossRefGoogle Scholar
Pinto, D., Bonaccorsi, E., Balić-Žunić, T. and Makovicky, E. (2008) The crystal structure of vurroite, Pb20Sn2(Bi,As)22S54Cl6: OD-character, polytypism, twinning, and modular description. American Mineralogist, 93, 719727.CrossRefGoogle Scholar
Pinto, D., Balić-Žunić, T., Garavelli, A. and Vurro, F. (2011) Structure refinement of Ag-free heyrovskýite from Vulcano (Aeolian Islands, Italy). American Mineralogist, 96, 11201128.CrossRefGoogle Scholar
Pinto, D, Garavelli, A. and Mitolo, D. (2014) Balićžunićite, Bi2O(SO4)2, a new fumarole mineral from La Fossa crater, Vulcano, Aeolian Islands, Italy. Mineralogical Magazine, 78, 10431055.CrossRefGoogle Scholar
Pinto, D., Garavelli, A. and Balić-Žunić, T. (2015a) The crystal structure of balićžunićite, Bi2O(SO4)2, a new natural bismuth oxide sulphate. Mineralogical Magazine, 79, 597611.CrossRefGoogle Scholar
Pinto, D., Garavelli, A. and Bindi, L. (2015b) Fluorite-related one-dimensional units in natural bismuth oxysulfates: the crystal structures of Bi14O16(SO4)5 and Bi30O33(SO4)9(AsO4)2 fluorite related one-dimensional units. Acta Crystallographica, B71, 514523.Google Scholar
Rosenberg, P.E. (1988) Aluminum fluoride hydrates, volcanogenic salts from Mount Erebus, Antarctica. American Mineralogist, 73, 855860.Google Scholar
Rosenberg, P.E. (1992) The hydroxylation of fluorite under hydrothermal conditions. The Canadian Mineralogist, 30, 457462.Google Scholar
Rosenberg, P.E. (2006) Stability relations of aluminum hydroxy-fluoride hydrate, a ralstonite-like mineral in the system AlF3–Al2O3–H2O–HF. The Canadian Mineralogist, 44, 125134.CrossRefGoogle Scholar
Ruste, J. (1979) X-Ray spectrometry. Pp 215267 in: Microanalysis and Scanning Electron Microscopy (Maurice, F., Meny, L. and Tixier, R., editors). Summer School St-Martin-d'Hères, France, September 11–16, 1978, Les Editions de Physique, Orsay, France.Google Scholar
Sheldrick, G.M. (2002) SADABS Area-Detector Absorption Correction Program. Bruker AXS Inc., Madison, Wisconsin, UK.Google Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112122.CrossRefGoogle Scholar
Vurro, F., Garavelli, A., Garbarino, C., Moëlo, Y. and Borodaev, Y.S. (1999) Rare sulfosalts from Vulcano, Aeolian Islands, Italy. II. Mozgovaite, PbBi4(S,Se)7, a new mineral species. The Canadian Mineralogist, 37, 14991506.Google Scholar
Witzke, T., de Wit, F., Kolitsch, U. and Blaß, G. (2015) Mineralogy of the Burning Anna I Coal Mine Dump, Alsdorf, Germany. Pp. 203240, in: Coal and Peat Fires: A Global Perspective, Volume 3: Case Studies – Coal Fires (Stracher, G.B., Prakashand, A. and Sokol, E.V., editors). Elsevier, 786 pp.Google Scholar
Supplementary material: File

Garavelli et al. supplementary material

Garavelli et al. supplementary material 1

Download Garavelli et al. supplementary material(File)
File 18.9 KB
Supplementary material: File

Garavelli et al. supplementary material

Garavelli et al. supplementary material 2

Download Garavelli et al. supplementary material(File)
File 19 KB