Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-26T03:49:26.407Z Has data issue: false hasContentIssue false

Tondiite, Cu3Mg(OH)6Cl2, the Mg-analogue of herbertsmithite

Published online by Cambridge University Press:  05 July 2018

T. Malcherek*
Affiliation:
Mineralogisch-Petrographisches Institut, Universität Hamburg, Grindelallee 48, D-20146 Hamburg, Germany
L. Bindi
Affiliation:
Dipartimento di Scienze della Terra, Universitá di Firenze, via La Pira, 4, I-50121, Florence, Italy
M. Dini
Affiliation:
Pasaje San Augustin, 4045 La Serena, Chile
M. R. Ghiara
Affiliation:
Centro Musei delle Scienze Naturali e Fisiche, Real Museo Mineralogico, Universitá di Napoli Frederico II, Via Mezzocannone, 8, I-80138 Naples, Italy Dipartimento di Scienze della Terra, dell’Ambiente e delle Risorse, Universitá di Napoli Federico II, Largo san Marcellino 10. 80138 Naples, Italy
A. Molina Donoso
Affiliation:
Los Algarrobos, 2986 Iquique, Chile
F. Nestola
Affiliation:
Dipartimento di Geoscienze, Universitá di Padova, Via G. Gradenigo, 6, I-35131 Padua, Italy
M. Rossi
Affiliation:
Centro Musei delle Scienze Naturali e Fisiche, Real Museo Mineralogico, Universitá di Napoli Frederico II, Via Mezzocannone, 8, I-80138 Naples, Italy Dipartimento di Scienze della Terra, dell’Ambiente e delle Risorse, Universitá di Napoli Federico II, Largo san Marcellino 10. 80138 Naples, Italy
J. Schlüter
Affiliation:
Mineralogisch-Petrographisches Institut, Universität Hamburg, Grindelallee 48, D-20146 Hamburg, Germany

Abstract

Tondiite, with the simplified formula Cu3Mg(OH)6Cl2, occurs as a rare supergene mineral in a phonolitic tephrite from the type locality, Vesuvius volcano, Italy, as well as associated with haydeeite in the Santo Domingo Mine, Arica Province, Chile. It is emerald green to bright green in colour and occurs in irregularly shaped crystals, often with stepped faces. Its calculated density is 3.503 g cm−3. Tondiite crystallizes with the herbertsmithite structure type, space group Rm. Lattice parameters are a = 6.8377(7) Å and c = 14.088(2)Å for the holotype material. The c parameter may vary with Mg/Cu ratio and the presence of impurity atoms. The five strongest lines in the calculated powder diffraction pattern are [d in Å(I)(hkil)]: 5.459(88)(101), 3.419(22)(110), 2.764(100)(112 3), 2.266(54)(024), 1.706(26)(220). Several tondiite crystals have been examined by single-crystal X-ray diffraction and by electron microprobe analysis. The observed Mg content ranges between 0.6 and 0.7 atoms per formula unit. The structural role of Mg is discussed.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Braithwaite, R.S.W., Mereiter, K., Paar, W.H. and Clark, A.M. (2004) Herbertsmithite, Cu3Zn(OH)6Cl2, a new species, and the definition of paratacamite. Mineralogical Magazine, 68, 527539.CrossRefGoogle Scholar
Chu, S., McQueen, T.M., Chisnell, R., Freedman, D.E., Müller, P., Lee, Y.S. and Nocera, D.G. (2010) A Cu2+ (S = 1/2) kagome antiferromagnet: MgxCu4–x(OH)6Cl2. Journal of the American Ceramics Society, 132, 55705571.Google Scholar
Clissold, M.E., Leverett, P., Williams, P.A., Hibbs, D.E. and Nickel, E.H. (2007) The structure of gillardite, the Ni-analogue of herbertsmithite, from Widgiemooltha, Western Australia. The Canadian Mineralogist, 45, 317320.CrossRefGoogle Scholar
Colman, R.H., Sinclair, A. and Wills, A.S. (2011) Magnetic and crystallographic studies of Mgherbertsmithite, g-Cu3Mg(OH)6Cl2, a new S = 1/2 kagome magnet and candidate spin liquid. Chemistry of Materials, 23, 18111817.CrossRefGoogle Scholar
Fleet, M.E. (1975) The crystal structure of paratacamite, Cu2(OH)3Cl. Acta Crystallographica, B31, 183187.CrossRefGoogle Scholar
Grice, J.D., Szymański, J.T. and Jambor, J.L. (1996) The crystal structure of clinoatacamite, a new polymorph of Cu2(OH)3Cl. The Canadian Mineralogist, 34, 7378.Google Scholar
Kampf, A.R., Sciberras, M.J., Leverett, P., Williams, P.A., Malcherek, T., Schlüter, J., Welch, M., Dini, M. and Molina Donoso, A.A. (2013a) Paratacamite- (Mg), Cu3(Mg,Cu)Cl2(OH)6 a new substituted basic copper chloride mineral from Camerones, Chile. Mineralogical Magazine, 77, 31133123.CrossRefGoogle Scholar
Kampf, A.R., Sciberras, M.J., Williams, P.A., Dini, M. and Molina Donoso, A.A. (2013b) Leverettite from the Torrecillas mine, Iquique province, Chile: the coanalogue of herbertsmithite. Mineralogical Magazine, 77, 30473054.CrossRefGoogle Scholar
Kermarrec, E., Mendels, P., Bert, F., Colman, R.H., Wills, A.S., Strobel, P., Bonville, P., Hillier, A. and Amato, A. (2011) Spin-liquid ground state in the frustrated kagome antiferromagnet MgCu3(OH)6Cl2. Physical Review B, 84, 100401.Google Scholar
Kraus, W. and Nolze, G. (1996) POWDER CELL a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. Journal of Applied Crystallography, 29, 301303.CrossRefGoogle Scholar
Krause, W., Bernhardt, H., Braithwaite, R.S.W., Kolitsch, U. and Pritchard, R. (2006) Kapellasite, Cu3Zn(OH)6Cl2, a new mineral from Lavrion, Greece, and its crystal structure. Mineralogical Magazine, 70, 329340.CrossRefGoogle Scholar
Malcherek, T. and Schlüter, J. (2007) Cu3MgCl2(OH)6 and the bond valence parameters of the OH–Cl bond. Acta Crystallographica, B63, 157160.CrossRefGoogle Scholar
Malcherek, T. and Schlüter, J. (2009) Structures of the pseudo-trigonal polymorphs of Cu2(OH)3Cl. Acta Crystallographica, B65, 334341.CrossRefGoogle Scholar
Malcherek, T. and Schlüter, J. (2010) Anatacamite from La Vendida mine, Sierra Gorda, Atacama desert, Chile: a triclinic polymorph of Cu2(OH)3Cl, Neues Jahrbuch für Mineralogie – Abhandlungen, 187, 307312.CrossRefGoogle Scholar
Mortimer, C., Saric, N. and Cáceres, R. (1971) Apuntes sobre minas de la región costera, provincia de Tarapacá. Instituto de Investigaciones Geoló gicas, Iquique, Chile.Google Scholar
Petříček, V., Dušek, M. and Palatinus, L. (2006) JANA2006. The crystallographic computing system. Institute of Physics, Prague.Google Scholar
Schlüter, J. and Malcherek, T. (2007) Haydeeite, Cu3Mg(OH)6Cl2, a new mineral from the Haydee mine, Salar Grande, Atacama desert, Chile. Neues Jahrbuch für Mineralogie – Abhandlungen, 184, 3943.CrossRefGoogle Scholar
Schreurs, A.M.M., Xian, X. and Kroon-Batenburg, L.M.J. (2010) EVAL15: a diffraction data integration method based on ab initio predicted profiles. Journal of Applied Crystallography, 43, 7082.CrossRefGoogle Scholar
Welch, M.D., Sciberras, M.J., Williams, P.A., Leverett, P., Schlüter, J. and Malcherek, T. (2014) A temperature-induced reversible transformation between paratacamite and herbertsmithite. Physics and Chemistry of Minerals, 41, 3348.CrossRefGoogle Scholar