Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-28T23:48:56.599Z Has data issue: false hasContentIssue false

The Turiy Massif, Kola Peninsula, Russia: mineral chemistry of an ultramafic-alkaline-carbonatite intrusion

Published online by Cambridge University Press:  05 July 2018

E. A. Dunworth*
Affiliation:
Ottawa-Carleton Geoscience Centre, Department of Earth Sciences, Carleton University, Ottawa, Ontario, K1S 5B6 Canada
K. Bell
Affiliation:
Ottawa-Carleton Geoscience Centre, Department of Earth Sciences, Carleton University, Ottawa, Ontario, K1S 5B6 Canada
*

Abstract

The Turiy Massif, on the southern coast of the Kola Peninsula, consists of five intrusive complexes containing a variety of carbonatites, phoscorites, melilitolites, ijolites and pyroxenites. Petrographic and mineralogical studies of the different rocks show that the samples are texturally heterogeneous. Minerals including apatite, garnet, magnetite, melilite, mica and pyroxene, show systematic variations in composition relating to the rock type in which they occur. Compositional similarities and/or distinct trends are seen in the mineral compositions within the each of the pyroxenite-melilitolite, and melteigite-ijolite rock series, indicating linked petrogenetic histories within each of the two series. The carbonatites from the northern complex may be related to nearby melilitolites, but the central complex carbonatites and phosocorites do not bear any mineralogical (or isotopic) similarities to any of the silicate rocks within the massif.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Meridian Scientific Services Inc., Box 1150, 2458 Huntley Rd, Stittsville, Ontario, K2S 1B8 Canada

References

Abrecht, J. and Hewitt, D.A. (1988) Experimental evidence on the substitution of Ti in biotite. American Mineralogist, 73, 12731284.Google Scholar
Araújo, D.P. (1996) Metassomatismo no complexo carbonatitico Catalão-I: implicações para a copmo- sição do magma carbonati.tico e para o metassoma- tism carbonati.tico no manto superior. Unpublished MSc thesis, University of Brasilia, Brasil.Google Scholar
Beliankin, D.S. and Kupletskii, B.M. (1924) Rocks and mineral resources of the northern shore and islands of the Gulf of Kandalaksha. Trudy Severnoi Nauchnoprormyshlennoi ekspedicii, 28, 376.(in Russian).Google Scholar
Bell, K., Dunworth, E.A., Bulakh A.G. and Ivanikov, V.V. (1996) Alkalic rocks of the Turiy Massif, Kola Peninsula, including type-locality turjaite and turjite: a review. The Canadian Mineralogist, 34, 265280.Google Scholar
Boctor, N.Z. and Boyd, F.R. (1979) Distribution of the rare earth elements in perovskites from kimberlites. Carnegie Institute of Washington Annual Report from the Director of the Geophysical Laboratory, 1978-1979, 572574.Google Scholar
Borodin, L.S. (1963) Perovskite in ultrabasic rocks of the Afrikanda massif and some problems as to the origin of this massif. Trudy, IMGRE, 15 (in Russian).Google Scholar
Brod, J.A., Gaspar, J.C., de Araújo, D.P., Gibson, S.A., Thompson, R.N. and JunqueiraBrod, T.C. (2001) Phlogopite and tetra-ferriphlogopite from Brazilian carbonatite complexes: petrogenetic constraints and implications for mineral-chemistry systematics. Journal of Asian Sciences, 19, 265296.Google Scholar
Buddington, A.F. and Lindsley, D.H. (1964) Iron- titanium oxide minerals and synthetic equivalents. Journal of Petrology, 5, 310357.CrossRefGoogle Scholar
Bulakh, A.G. and Ivanikov, V.V. (1984) The Problems of Mineralogy and Petrology of Carbonatites. Leningrad University Publishing House, Saint Petersburg, 240 pp. (in Russian)Google Scholar
Bulakh, A.G. and Ivanikov, V.V. (1996) Carbonatites of the Turiy Peninsula, Kola: role of magmatism and of metasomatism. The Canadian Mineralogist, 34, 403409.Google Scholar
Dalton, J.A. and Presnall, D.C. (1997) Phase relations in the system CaO-MgO-Al2O3-SiO2-CO2 from 3.0 to 7.0 GPa: carbonatites, kimberlites and carbonatite- kimberlite relations. GAC/MAC Annual Meeting, Ottawa, Canada, Abstracts volume, A34.Google Scholar
Dawson, J.B., Steele, I.M., Smith, J.V. and Rivers, M.L. (1996) Minor and trace element chemistry of carbonates, apatites and magnetites in some African carbonatites. Mineralogical Magazine, 60, 415425.CrossRefGoogle Scholar
Deer, W.A., Howie, R.A. and Zussman, J. (1986) Disilicates and Ring Silicates, Vol. 1B. Longman, Harlow, Essex, UK, 629 pp.Google Scholar
Deer, W.A., Howie, R.A. and Zussman, J. (1992) An Introduction to the Rock-forming Minerals . Longman Scientific & Technical, Harlow, Essex, 696 pp.Google Scholar
Dunworth, E.A. (1997) The Turiy Massif, Kola Peninsula, Russia: Open-system disequilibrium. Unpublished PhD thesis, Carleton University, Ottawa, Canada, 508 pp.Google Scholar
Dunworth, E.A. and Bell, K. (1998) Melilitolites: a new scheme of classification The Canadian Mineralogist, 36, 895903.Google Scholar
Dunworth, E.A. and Bell, K. (2001) The Turiy Massif, Kola Peninsula, Russia: isotopic and geochemical evidence for multi-source evolution. Journal of Petrology, 42, 377405.CrossRefGoogle Scholar
Dunworth, E.A. and Wilson, M. (1998) Olivine melilitites of the SW German Tertiary Volcanic Province: mineralogy and petrogenesis. Journal of Petrology, 39, 18051836.CrossRefGoogle Scholar
Foley, S.F. (1989) Experimental constraints on phlogo- pite chemistry in lamproites: 1. The effect of water activity and oxygen fugacity. European Journal of Mineralogy, 1, 411426.CrossRefGoogle Scholar
Foley, S.F. (1990) Experimental constraints on phlogo- pite chemistry in lamproites: 2. Effect of pressure- temperature variations. European Journal of Mineralogy, 2, 327341.CrossRefGoogle Scholar
Gaspar, J.C. and Wylie, P. (1987) The phlogopites from the Jacupiranga carbonatite intrusions. Mineralogy and Petrology, 36, 121134.CrossRefGoogle Scholar
Henderson, C.M.B. and Foland, K.A. (1996) Ba-and Ti-rich primary biotite from the Brome alkaline igneous complex, Monteregian Hills, Quebec: mechanisms of substitution. The Canadian Mineralogist, 34, 12411252.Google Scholar
Hogarth, D.D. (1989) Pyrochlore, apatite and amphi-bole: distinctive minerals in carbonatite. Pp. 105-148 in: Carbonatites, Genesis and Evolution (Bell, K., editor). Unwin Hyman, London.Google Scholar
Hogarth, D.D. (1997) Mineralogy of leucite-bearing dykes from Napoleon Bay, Baffin Island: multistage Proterozoic lamproites. The Canadian Mineralogist, 35, 5378.Google Scholar
Holloway, J.R., Mysen, B.O. and Eggler, D.H. (1976) The solubility of CO2 in liquids on the join CaO- MgO-SiO2-CO2. Carnegie Institute of Washington Yearbook, 75, 626631.Google Scholar
Kapustin, Y.L. (1980) Mineralogy of Carbonatites. Amerind Publishing Corporation, New Delhi, 259 pp.Google Scholar
Kogarko, L.N. (1987) Alkaline rocks of the eastern part of the Baltic Shield (Kola Peninsula). Pp. 531-544 in: Alkaline Igneous Rocks (Fitton, J.G. and Upton, B.G.J., editors). Geological Society Special Publication, 30. Blackwell Scientific Publications, Oxford, UK.Google Scholar
Kogarko, L.N., Kononova, V.A., Orlova, M.P. and Woolley, A.R. (1995) Alkaline Rocks and Carbonatites of the World. Part 2: Former USSR. Chapman & Hall, London, 232 pp.Google Scholar
Kramm, U., Kogarko, L.N., Kononova, V.A. and Vartiainen, H. (1993) The Kola Alkaline Province of the CIS and Finland: Precise Rb-Sr ages define 380-360 Ma age range for all magmatism. Lithos, 30, 3344.CrossRefGoogle Scholar
Kukharenko, A.A., Orlova, M.P., Bulakh, A.G., Bagdasarov, E.A., Rimskaya-Korsakova, O.M., Nefedov, E.I., Illinskiy, G.A., Sergeev, A.S. and Abakumova, N.B. (1965) The Caledonian Ultramafic Alkalic and Carbonatitic Complexes of the Kola Peninsula and Northern Karelia. Nedra, Moscow, 772 pp. (in Russian)Google Scholar
Lattard, D. (1995) Experimental evidence for the exsolution of ilmenite from titaniferous spinel. American Mineralogist, 80, 968981.CrossRefGoogle Scholar
Leake, B. (1978) Nomenclature of amphiboles. The Canadian Mineralogist, 16, 501520.Google Scholar
Le Bas, M.J. and Handley, C.D. (1979) Variations in apatite composition in ijolitic and carbonatitic igneous rocks. Nature, 279, 5456.CrossRefGoogle Scholar
Le Maitre, R.W. (editor) (1989) A Classification of Igneous Rocks and Glossary of Terms . Blackwell Scientific Publications, Oxford, UK. 193 pp.Google Scholar
Locock, A., Luth, R.W., Cavell, R.G., Smith, D.G.W. and Duke, M.J.M. (1995) Spectroscopy of the cation distribution in the schorlomite species of garnet. American Mineralogist, 80, 2738.CrossRefGoogle Scholar
Ludington, S. (1978) The biotite-apatite geothermometer revisited. American Mineralogist, 63, 551553.Google Scholar
Mysen, B.O. and Virgo, D. (1980) Solubility mechanisms of carbon dioxide in silicate melts: a Raman spectroscopic study. American Mineralogist, 65, 885899.Google Scholar
Mysen, B.O. and Virgo, D. (1985) Interaction between fluorine and silica in quenched melts on the joins SiO2-AlF3 and SiO-NaF determined by Raman spectroscopy. Physics and Chemistry of Minerals, 12, 7785.CrossRefGoogle Scholar
Mysen, B.O., Eggler, D.H., Seitz, M.G. and Holloway, J.R. (1976) Carbon dioxide in silicate melts and crystals. Part 1, Solubility measurements. American Journal of Science, 276, 455—47.CrossRefGoogle Scholar
Mysen, B.O., Virgo, D., Harrison, W.J. and Scarfe, C.M. (1980) Solubility mechanisms of H2O in silicate melts at high pressures and termperatures: a Raman spectroscopic study. American Mineralogist, 65, 900914.Google Scholar
Nickel, E.H. and Nichols, M.C. (1991) Mineral Reference Manual . Van Nostrand Reinhold, New York, 248 pp.CrossRefGoogle Scholar
Nielsen, T.F.D. (1980) The petrology of a melilitolite, melteigite, carbonatite and syenite ring dike system, in the Gardiner complex, East Greenland. Lithos, 13, 181197.CrossRefGoogle Scholar
Nielsen, T.F.D., Solovova, I.P. and Veksler, I.V. (1997) Parental melts of melilitolite and origin of alkaline carbonatite: Evidence from crystallised melt inclusions, Gardiner complex. Contributions to Mineralogy and Petrology, 126, 331344.CrossRefGoogle Scholar
Poe, B.T., McMillan, P.F., Angell, C.A. and Sato, R.K. (1992) Al and Si co-ordination in SiO2-Al2O3 glasses and liquids: A study by NMR and IR spectroscopy and MD simulations. Chemical Geology, 96, 333349.CrossRefGoogle Scholar
Ramsay, W. (1921) En melilitforande djupbergart fran Turiy pa sydsidan av Kolahalvon. Geologiska Föreningens i Stockholm. Förhandlingar, 43.Google Scholar
RimskayaKorsakova, O.M. and Sokolova, E.P. (1964) On iron-magnesium mica with reverse scheme of absorption. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 93, 411423.(in Russian).Google Scholar
Ronenson, B.M., Afanas’vey, B.V. and Levin, V.Y. (1981) Turjaite parageneses of Tur’ya Peninsula. International Geology Review, 23, 535543.CrossRefGoogle Scholar
Treiman, A.H. and Essene, E.J. (1985) The Oka carbonatite complex, Quebec: geology and evidence for silicate-liquid immiscibility. American Mineralogist, 70, 11011113.Google Scholar
Verwoerd, V.I. (1978) Liquid immiscibility and the carbonatite-ijolite relationship: preliminary data on the join NaFe3+Si2O6-CaCO3 and related compositions. Carnegie Institute of Washington Yearbook, 77, 767774.Google Scholar
Watkinson, D.H. and Wyllie, P.J. (1971) Experimental study of the composition join NaAlSiO4-CaCO3-H2O and the genesis of alkalic rock-carbonatite complexes. Journal of Petrology, 12, 357378.CrossRefGoogle Scholar
Zaitsev, A.N. (1996) Rhombohedral carbonates from carbonatites of the Khibina Massif, Kola Peninsula, Russia. The Canadian Mineralogist, 34, 453468.Google Scholar
Zaitsev, A. and Bell, K. (1995) Sr and Nd isotope data of apatite, calcite and dolomite as indicators of source, and the relationships of phoscorites and carbonatites from the Kovdor massif, Kola Peninsula, Russia. Contributions to Mineralogy and Petrology, 121, 324335.CrossRefGoogle Scholar
Zhang, M., Suddaby, P., Thompson, R.N. and Dungan, M.A. (1993) Barian-titanian phlogopite from potas- sic lavas in NE China: chemical substitution and paragenesis. American Mineralogist, 78, 10561065.Google Scholar