Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-26T04:43:43.481Z Has data issue: false hasContentIssue false

Unique thallium mineralization in the fumaroles of Tolbachik volcano, Kamchatka Peninsula, Russia. I. Markhininite, TlBi(SO4)2

Published online by Cambridge University Press:  05 July 2018

Oleg I. Siidra*
Affiliation:
Department of Crystallography, St Petersburg State University, University Emb. 7/9, 199034 St Petersburg, Russia
Lidiya P. Vergasova
Affiliation:
Institute of Volcanology, Russian Academy of Sciences, Bulvar Piypa 9, 683006 Petropavlovsk-Kamchatskiy, Russia
Sergey V. Krivovichev
Affiliation:
Department of Crystallography, St Petersburg State University, University Emb. 7/9, 199034 St Petersburg, Russia Institute of silicate Chemistry, Russian Academy of Sciences, Makarova Emb. 6, 199034 St Petersburg, Russia
Yuri L. Kretser
Affiliation:
V.G. Khlopin Radium Institute, Roentgen Street 1, 197101 St Petersburg, Russia
Anatoly N. Zaitsev
Affiliation:
Department of Mineralogy, St Petersburg State University, University Emb. 7/9, 199034 St Petersburg, Russia
Stanislav K. Filatov
Affiliation:
Department of Crystallography, St Petersburg State University, University Emb. 7/9, 199034 St Petersburg, Russia
*

Abstract

Markhininite, ideally TlBi(SO4)2, was found in a fumarole of the 1st cinder cone of the North Breach of the Great Fissure Tolbachik volcano eruption (1975–1976), Kamchatka Peninsula, Russia. Markhininite occurs as white pseudohexagonal plates associated with shcherbinaite, pauflerite, bobjonesite, karpovite, evdokimovite and microcrystalline Mg, Al, Fe and Na sulfates. Markhininite is triclinic, P, a = 7.378(3), b = 10.657(3), c = 10.657(3) Å , α = 61.31(3), β = 70.964(7), γ = 70.964(7)º, V = 680.2(4) Å3, Z = 4 (from single-crystal diffraction data). The eight strongest lines of the X-ray powder diffraction pattern are (I/d/hkl): 68/4.264/111, 100/3.441/113, 35/3.350/222, 24/3.125/122, 23/3.054/202, 45/2.717/022, 20/2.217/331, 34/2.114/204. Chemical composition determined by electron microprobe analysis is (wt.%): Tl2O 35.41, Bi2O3 38.91, SO3 25.19, total 99.51. The empirical formula based on 8 O a.p.f.u. is Tl1.04Bi1.05S1.97O8. The simplified formula is TlBi(SO4)2, which requires Tl2O 35.08, Bi2O3 38.48, SO3 26.44, total 100.00 wt.%. The crystal structure was solved by direct methods and refined to R1 = 0.055 on the basis of 1425 independent observed reflections. The structure contains four Tl+ and two Bi3+ sites in holodirected symmetrical coordination. BiO8 tetragonal antiprisms and SO4 tetrahedra in markhininite share common O atoms to produce [Bi(SO4)2] layers of the yavapaiite type. The layers are parallel to (111) and linked together through interlayer Tl+ cations. The mineral is named in honour of Professor Yevgeniy Konstantinovich Markhinin (b. 1926), Institute of Volcanology, Russian Academy of Sciences, Kamchatka peninsula, Russia, in recognition of his contributions to volcanology. Markhininite is the first oxysalt compound that contains both Tl and Bi in an ordered crystal structure.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alkemper, J. and Fuess, H. (1998) The crystal structures o f NaMgPO 4, Na2 C a M g (PO4) 2 a n d Na18Ca13Mg5(PO4)18: new examples for glaserite related structures. Zeitschrift für Kristallographie, 213, 282287.Google Scholar
Baker, R.G.A., Rehkämper, M., Hinkley, T.K., Nielsen, S.G. and Toutain, J.P. (2009) Investigation of thallium fluxes from subaerial volcanism – implications for the present and past mass balance of thallium in the oceans. Geochimica et Cosmochimica Acta, 73, 63406359.CrossRefGoogle Scholar
Balić-Žunić, T. and Vickovic, I. (1996) IVTON - program for the calculation of geometrical aspects of crystal structures and some crystal chemical applications. Journal of Applied Crystallography, 29, 305306.CrossRefGoogle Scholar
Balić-Žunić, T., Moelo, Y., Loncar, Z. and Micheelsen, H. (1994) Dorallcharite, Tl0.8K0.2Fe3(SO4)2(OH)6, a new member of the jarosite-alunite family. European Journal of Mineralogy, 6, 255263.Google Scholar
Balić-Žunić, T., Garavelli, A., Acquafredda, P., Leonardsen, E. and Jakobsson, S.P. (2009) Eldfellite, NaFe(SO4)2, a new fumarolic mineral from Eldfell volcano, Iceland. Mineralogical Magazine, 73, 5157.CrossRefGoogle Scholar
Brown, I.D. and Faggiani, R. (1980) The structure of thallium(I) tetraacetatothallate(III): when is the lone pair of electrons on TlI stereoactive? Acta Crystallographica, B36, 18021806.CrossRefGoogle Scholar
Campostrini, I., Demartin, F. and Gramaccioli, C.M. (2008) Hephaistosite, TlPb2Cl5 a new mineral species from La Fossa crater, Vulcano, Aeolian Islands, Italy. The Canadian Mineralogist, 46, 701708.CrossRefGoogle Scholar
CNMNC (2013) IMA list of minerals. http://pubsites.uws.edu.au/ima-cnmnc/ [Accessed on 15/07/2013].Google Scholar
Daiyan, C., Guanxin, W., Zhenxi, Z. and Yuming, C. (2001) A new mineral – lanmuchangite. Acta Mineralogica Sinica, 21, 271277.Google Scholar
Demartin, F., Gramaccioli, C.M. and Campostrini, I. (2009) Steropesite, Tl3BiCl6, a new thallium bismuth chloride from La Fossa crater, Vulcano, Aeolian islands, Italy. The Canadian Mineralogist, 47, 373380.CrossRefGoogle Scholar
Fedotov, S.A. (editor) (1984) Large Tolbachik Fissure Eruption. Kamchatka 19751976. Nauka, Moscow.Google Scholar
Fedotov, S.A. and Markhinin, Y.K. (editors) (2011) The Great Tolbachik Fissure Eruption: Geological and Geophysical Data 19751976. Cambridge University Press, Cambridge, UK.Google Scholar
Filatov, S.K., Vergasova, L.P., Siidra, O.I., Krivovichev, S.V. and Kretser, Y.L. (2013) Markhininite, IMA 2012-040. CNMNC Newsletter No. 15, February 2013, page 2; Mineralogical Magazine, 77, 112.Google Scholar
IMA No. 2012-045. Giester, G. (1995) Crystal structure of KMn3+(SeO4)2 – a triclinic distorted member of the yavapaiite family. Mineralogy and Petrology, 53, 165171.CrossRefGoogle Scholar
Graeber, E.J. and Rosenzweig, A. (1971) The crystal structures of yavapaiite, KFe(SO4)2, and goldichite, KFe(SO4)2(H2O)4. American Mineralogist, 56, 19171933.Google Scholar
Hawthorne, F.C. (2012) A bond-topological approach to theoretical mineralogy: crystal structure, chemical composition and chemical reactions. Physics and Chemistry of Minerals, 39, 841874.CrossRefGoogle Scholar
Hawthorne, F.C., Krivovichev, S.V. and Burns, P.C. (2000) The crystal chemistry of sulfate minerals. Pp. 1112. in: Sulfate Minerals: Crystallography, Geochemistry, and Environmental Significance (Alpers, C.N., Jambor, J.L. and Nordstrom, D.K., editors). Reviews in Mineralogy and Geochemistry, 40. Mineralogical Society of America and the Geochemical Society, Washington, DC.Google Scholar
Johan, Z. and Mantienne, J. (2000) Thallium-rich mineralization at Jas Roux, Hautes-Alpes, France: a complex epithermal, sediment-hosted, ore-forming system. Journal of the Czech Geological Society, 45, 6377.Google Scholar
Karup-Møller, S. and Makovicky, E. (2011) Mineral X, a new thalcusite homologue from the Ilímaussaq complex, South Greenland. Bulletin of the Geological Society of Denmark, 59, 1322.CrossRefGoogle Scholar
Kellerhals, T., Tobler, L., Brütsch, S., Sigl, M., Wacker, L., Gäggeler, H.W. and Schwikowski, M. (2010) Thallium as tracer for preindustrial volcanic eruptions in the ice core record from Illimani, Bolivia. Environmental Science & Technology, 44, 888893.CrossRefGoogle ScholarPubMed
Kolitsch, U., Maczka, J. and Hanuza, J. (2003) NaAl(MoO4)2: a rare structure type among layered yavapaiite-related AM(XO4)2 compounds. Acta Crystallographica, E59, i10–i13.Google Scholar
Kovalenker, V.A., Laputina, I.P., Evstigneeva, T.L. and Izoitko, V.M. (1976) Thalcusite Cu3-xTl2Fe1+xS4 new sulphide of thallium from coppernickel ores of the Talnakh deposit. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 105, 202206.Google Scholar
Krivovichev, S.V. (2009) Structural Crystallography of Inorganic Oxysalts. Oxford University Press, Oxford, UK.CrossRefGoogle Scholar
Krivovichev, S.V., Vergasova, L.P., Filatov, S.K., Rybin, D.S., Britvin, S.N. and Ananiev, V.V. (2013a) Hatertite, Na2(Ca, Na)(Fe3+, Cu)2(AsO4)3, a new alluaudite-group mineral from Tolbachik fumaroles, Kamchatka peninsula, Russia. European Journal of Mineralogy, 25, 683691.CrossRefGoogle Scholar
Krivovichev, S.V., Mentré, O., Siidra, O.I., Colmont, M. and Filatov, S.K. (2013b) Anion-centered tetrahedra in inorganic compounds. Chemical Reviews, 113, 64596535.CrossRefGoogle Scholar
Li, Y.-H. and Schoonmaker, J.E. (2003) Chemical composition and mineralogy of marine sediments. Pp. 135. in: Treatise on Geochemistry, Vol. 7. Sediments, Diagenesis, and Sedimentary Rocks (F.T. Mackenzie, editor). Elsevier-Pergamon, Oxford, UK.Google Scholar
Makovicky, E. and Balić-Žunić, T. (1998) New measure of distortion for coordination polyhedra. Acta Crystallographica, B54, 766773.CrossRefGoogle Scholar
Markhinin, E.K. (1967) The Role of Volcanism in Formation of the Earth’s Crust. Nauka, Moscow.Google Scholar
Murashko, M.N., Pekov, I.V., Krivovichev, S.V., Chernyatyeva, A.P., Yapaskurt, V.O., Zadov, A.E. and Zelensky, M.E. (2013) Steklite, KAl(SO4)2: a finding at the Tolbachik Volcano, Kamchatka, Russia, validating its status as a mineral species and crystal structure. Geology of Ore Deposits, 55, 594600.CrossRefGoogle Scholar
Naboko, S.I. and Glavatskikh, S.F. (1984) Post-eruption process. Pp. 309340. in: Large Tolbachik Fissure Eruption. Kamchatka 19751976. (S.A. Fedotov, editor). Nauka, Moscow.Google Scholar
Palme, H. and O’Neill, H.St.C. (2003) Cosmochemical estimates of mantle composition. Pp. 138. in: Treatise on Geochemistry, Vol. 2. The Mantle and Core (R.W. Carlson, editor). Elsevier-Pergamon, Oxford, UK.Google Scholar
Pekov, I.V., Zelenski, M.E., Zubkova, N.V., Ksenofontov, D.A., Kabalov, Y.K., Chukanov, N.V., Yapaskurt, V.O., Zadov, A.E. and Pushcharovsky, D.Y. (2012a) Krasheninnikovite, KNa2CaMg(SO4)3F, a new mineral from the Tolbachik volcano, Kamchatka, Russia. American Mineralogist, 97, 17881795.CrossRefGoogle Scholar
Pekov, I.V., Zelenski, M.E., Zubkova, N.V., Yapaskurt, V.O., Chukanov, N.V., Belakovskiy, D.I. and Pushcharovsky, D.Y. (2012b) Calciolangbeinite, K2Ca2(SO4)3, a new mineral from the Tolbachik volcano, Kamchatka, Russia. Mineralogical Magazine, 76, 673682.CrossRefGoogle Scholar
Pekov, I.V., Zelenski, M.E., Yapaskurt, V.O., Polekhovsky, Y.S. and Murashko, M.N. (2013a) Starovaite, KCu5O(VO4)3, a new mineral from fumarole sublimates of the Tolbachik volcano, Kamchatka, Russia. European Journal of Mineralogy, 25, 9196.CrossRefGoogle Scholar
Pekov, I.V., Zubkova, N.V., Zelenski, M.E., Yapaskurt, V.O., Polekhovsky, Y.S., Fadeeva, O.A. and Pushcharovsky, D.Y. (2013b) Yaroshevskite, Cu9O2(VO4)4Cl2, a new mineral from the Tolbachik volcano, Kamchatka, Russia. Mineralogical Magazine, 77, 107116.CrossRefGoogle Scholar
Prytulak, J., Nielsen, S.G., Plank, T., Barker, M. and Elliott, T. (2013) Assessing the utility of thallium and thallium isotopes for tracing subduction zone inputs to the Mariana arc. Chemical Geology, 345, 139149.CrossRefGoogle Scholar
Roberts, A.C., Venance, K.E., Seward, T.M., Grice, J.D. and Paar, W.H. (2006) Lafossaite, a new mineral from the La Fossa Crater, Vulcano, Italy. Mineralogical Record, 37, 165168.Google Scholar
Rudnick, R.L. and Gao, S. (2003) The composition of the continental crust. Pp. 164. in: Treatise on Geochemistry, Vol. 3. The Crust (R.L. Rudnick, editor). Elsevier-Pergamon, Oxford, UK.Google Scholar
Sarukhanyan, N.L., Iskhakova, L.D. and Trunov, V.K. (1983) Crystal structure of RbEu(SO4)2 . Kristallografiya, 28, 452456.Google Scholar
Shimoni-Livny, L., Glusker, J.P. and Bock, C.W. (1998) Lone pair functionality in divalent lead compounds. Inorganic Chemistry, 37, 18531867.CrossRefGoogle Scholar
Shuvalov, R.R., Vergasova, L.P., Semenova, T.F., Filatov, S.K., Krivovichev, S.V., Siidra, O.I. and Rudashevsky, N . S . (2013) P r e w i t t i t e , KPb1.5Cu6Zn(SeO3)2O2Cl10, a new mineral from Tolbachik Fumaroles, Kamchatka Peninsula, Russia: description and crystal structure. American Mineralogist, 98, 463469.CrossRefGoogle Scholar
Siidra, O.I., Vergasova, L.P., Kretser, Y.L., Polekhovsky, Y.S., Filatov, S.K. and Krivovichev, S.V. (2014a) Unique thallium mineralization in the fumaroles of Tolbachik volcano, Kamchatka P e n i n s u l a , R u s s i a . I I . K a r p o v i t e , Tl2VO(SO4)2(H2O). Mineralogical Magazine, 78, 16991709.CrossRefGoogle Scholar
Siidra, O.I., Vergasova, L.P., Kretser, Y.L., Polekhovsky, Y.S., Filatov, S.K. and Krivovichev, S.V. (2014b) Unique thallium mineralization in the fumaroles of Tolbachik volcano, Kamchatka Penins u l a , R u s s i a . I I I . Evdokimo v i t e , Tl4(VO)3(SO4)5(H2O)5. Mineralogical Magazine, 78, 17111724.CrossRefGoogle Scholar
Speck, A.L. (2003) Single-crystal structure validation with the program PLATON. Journal of Applied Crystallography, 36, 713.CrossRefGoogle Scholar
Starova, G.L., Vergasova, L.P., Filatov, S.K., Britvin, S.N. and Anan’ev, V.V. (2012) Lammerite-b, Cu3(AsO4)2, a new mineral from fumaroles of the Great Fissure Tolbachik eruption, Kamchatka Peninsula, Russia. Geology of Ore Deposits, 54, 565569.CrossRefGoogle Scholar
Styszynski, J. (2010) Challenges and advances in computational chemistry and physics. Pp. 99164. in: Relativistic Methods for Chemists Vol. 10 (Barysz, M. and Ishikawa, J., editors). Springer, Dordrecht, The Netherlands.CrossRefGoogle Scholar
Zelenski, M.E., Zubkova, N.V., Pekov, I.V., Boldyreva, M.M., Pushcharovsky, D.Y. and Nekrasov, A.N. (2011) Pseudolyonsite, Cu3(VO4)2, a new mineral species from the Tolbachik volcano, Kamchatka Peninsula, Russia. European Journal of Mineralogy, 23, 475481.CrossRefGoogle Scholar
Zelenski, M.E., Zubkova, N.V., Pekov, I.V., Polekhovsky, Y.S. and Pushcharovsky, D.Y. (2012) Cupromolybdite, Cu3O(MoO4)2, a new fumarolic mineral from the Tolbachik volcano, Kamchatka Peninsula, Russia. European Journal of Mineralogy, 24, 749757.CrossRefGoogle Scholar