Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-01T03:03:43.105Z Has data issue: false hasContentIssue false

Uranospathite and arsenuranospathite

Published online by Cambridge University Press:  05 July 2018

Kurt Walenta*
Affiliation:
Institut für Mineralogie und Kristallchemie der Universität, Stuttgart, West Germany

Summary

A reinvestigation of uranospathite from the type locality, Redruth, Cornwall, shows that it is an aluminium uranyl phosphate belonging to the torbernite series but more highly hydrated than other members thereof. The composition (HAl)0·5(UO2)2(PO4)2.20H2O was derived by indirect methods and by making use of analysis by the electron microprobe, which showed an Al2O3 content 2·6% in the partially dehydrated state. Unit-cell dimensions: a 7·00, c 30·02 Å, Z = 2. Probable space group P42/n. Strongest lines of the powder pattern: 15·22 (10) 002, 7·60 (10) 004, 4·93 (10) 110, 111, 3·50 (8) 116, 200, 201.

The mineral is unstable and unless preserved at low temperature or in a humid atmosphere converts into a new phase with a loss of 10- 12H2O. This phase (HAl)0.5 (UO2)2(PO4)2.8–10H2O is identical with the mineral sabugalite. Experimental work led to the synthesis of a hydrate with the composition (HAl)o·5(UO2)2(PO4)2. 16H2O, but not to fully hydrated uranospathite. This synthetic compound also dehydrates rapidly under normal conditions, converting into the same phase as does natural uranospathite. Arsenian uranospathite occurs at Menzenschwand in the Southern Black Forest.

Arsenuranospathite proper is a new mineral found at Menzenschwand and also at Wittichen in the Central Black Forest. It forms lathlike or wedge-shaped crystals of orthorhombic symmetry. Forms: {100}, {010}, {110}, {001}. Cleavage {001} perfect, {100} and {010} good. Hardness probably about 2, ρcak2·54 g cm −3. White to pale yellow. Streak white. Fluoresces greenish in ultra-violet light with variable intensity.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1978

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bultemann, (H. W.), 1960. Der Aufschlufi, 11, 281-3.Google Scholar
Chervet, (J.), 1960. Les mineraux secondaires. In Roubault, (M.), Les minerals uraniferesfrancais et leur gisements. 1, Saclay (S.-et-O.). Paris.Google Scholar
Chervet, (J.) and Branche, (G.), 1955. Contribution a l'etude des mineraux secondaires d'uranium francais. Sri. de la Terre, 3, 1186.Google Scholar
Frondel, (C.), 1951. Am. Mineral. 36, 671-9.Google Scholar
Frondel, (C.), 1954. Mineral. Mag. 30, 343-53.Google Scholar
Frondel, (C.), 1958. Systematic mineralogy of uranium and thorium. Bull. U.S. Geol. Surv. 1064, Washington.Google Scholar
Hallimond, (A. F.), 1915. Mineral. Mag. 17, 221-36.Google Scholar
Hallimond, (A. F.), 1954. Ibid. 30, 353.Google Scholar
Magin, (G. B.), Jansen, (G. J.), and Levin, (B.), 1959. Am. Mineral. 44, 419-22.Google Scholar
Walenta, (K.), 1960. Neues Jahrb. Mineral., Monatsh. 116-19.Google Scholar
Walenta, (K.), 1963. Jh. geol. Landesamt Baden-Wiirttemberg, 6, 3-35.Google Scholar
Walenta, (K.), 1965. Chem. Erde, 24, 254-78.Google Scholar
Walenta, (K.), 1967. Der Aufschlufi, 18, 151-62.Google Scholar
Walenta, (K.), 1972. Ibid. 23, 279-329.Google Scholar