Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-10T23:55:18.082Z Has data issue: false hasContentIssue false

Vanadoallanite-(La): a new epidote-supergroup mineral from Ise, Mie Prefecture, Japan

Published online by Cambridge University Press:  05 July 2018

M. Nagashima
Affiliation:
Graduate school of Science and Engineering, Yamaguchi University, Yamaguchi 753-8512, Japan
D. Nishio-Hamane
Affiliation:
The institute for Solid State Physics, the University of Tokyo, Kashiwa, Chiba 277-8581, Japan
N. Tomita
Affiliation:
Department of Earth Science, Faculty of Science, Ehime University, Matsuyama, Ehime 790-8577, Japan
T. Minakawa
Affiliation:
Department of Earth Science, Faculty of Science, Ehime University, Matsuyama, Ehime 790-8577, Japan
S. Inaba
Affiliation:
Inaba-Shinju Corporation, Minami-ise, Mie 516-0109, Japan

Abstract

The new mineral, vanadoallanite-(La), found in the stratiform ferromanganese deposit from the Shobu area, Ise City, Mie Prefecture, Japan, was studied using electron microprobe analysis and single-crystal X-ray diffraction methods. Vanadoallanite-(La) is a rare-earth element-rich monoclinic epidote-supergroup mineral with simplified formula CaLaV3+AlFe2+(SiO4)(Si2O7)O(OH) (Z = 2, space group P21/m) characterized by predominantly V3+ at one of three octahedral sites, M1. The crystal studied shows large V (∼8.4 V2O3 wt.%), Fe (∼13.8 Fe2O3 wt.%; Fe2+/total Fe = 0.58) and Mn (∼8.8 MnO wt.%) contents. A small amount of Ti is also present (∼1.3 TiO2 wt.%). Structural refinement converged to R1 = 2.96%. The unit-cell parameters are a = 8.8985(2), b = 5.7650(1), c = 10.1185(2) Å, β = 114.120(1)° and V = 473.76(2) Å3. The cation distributions determined at A1,A2 and M3 are Ca0.61Mn0.39, (La0.46Ce0.14Pr0.07Nd0.18)Σ0.85Ca0.15 and Fe2+0.56Mn2+0.30Mg0.06V3+0.05Fe3+0.03, respectively. On the other hand, depending on Ti assignment, two different schemes of the cation distribution at M1 and M2 can be considered: (1) M1(V3+0.58Fe3+0.34Ti4+0.08) M2(Al0.92Fe3+0.08), and (2) M1(V3+0.58Fe3+0.42)M2(Al0.92Ti4+0.08). In both cases, the dominant cations at A1, A2, M1, M2 and M3 are Ca, La, V3+, Al and Fe2+ , respectively. According to ionic radius, Ti4+ possibly prefers M2 rather than Fe3+. A large Mn2+ content at A1 also characterizes our vanadoallanite-(La). The structural change of Mn2+-rich allanite-group minerals is considered to be controlled by two main factors. One is the large Mn2+ content at A1 in vanadoallanite-(La), which modifies the topology of the A1O9 polyhedron. The other is the expansion of M3O6 and M1O6 octahedra caused by large octahedral cations, such as Fe2+ and Mn2+, at M3 and the trivalent transition elements, V3+ and Fe3+, at M1.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Armbruster, T., Bonazzi, P., Akasaka, M., Bermanec, V., Chopin, C., Heuss-Assbischler, S., Liebscher, A., Menchetti, S., Pan, Y. and Pasero, M. (2006) Recommended nomenclature of epidote-group minerals. European Journal of Mineralogy, 18, 551567 CrossRefGoogle Scholar
Bač ík, P. and Uher, P. (2010) Dissakisite-(La), mukhinite, and clinozoisite: (V,, Cr, REE)-rich members of the epidote group in amphibole-pyritepyrrhotite metabasic rocks from Pezinok, Rybníček mine, Western Carpathians, Slovakia. The Canadian Mineralogist, 48, 523536 Google Scholar
Barresi, A.A., Orlandi, P. and Pasero, M. (2007) History of ardennite and the new mineral ardennite-(V). European Journal of Mineralogy, 19, 581587 CrossRefGoogle Scholar
Baur, H. (1974) The geometry of polyhedral distortions. Predictive relationships for the phosphate group. Acta Crystallographica, B30, 11951215 CrossRefGoogle Scholar
Bermanec, V., Armbruster, T., Oberha¨nsli, R. and Zebec, V. (1994) Crystal chemistry of Pb- and REE-rich piemontite from Nezilovo, Macedonia. Schweizer is che Mineralogischeund Petrographische Mitteilungen, 74, 321328 Google Scholar
Bonazzi, P., Menchetti, S. and Palenzona, A. (1990) Strontiopiemontite, a new member of the epidote group from Val Graveglia, Liguria, Italy. European Journal of Mineralogy, 2, 519523 CrossRefGoogle Scholar
Bonazzi, P., Garbarino, C. and Menchetti, S. (1992) Crystal chemistry of piemontites: REE-bearing piemontite from Monte Brugiana, Alpi Apuane, Italy. European Journal of Mineralogy, 4, 2333 CrossRefGoogle Scholar
Bonazzi, P., Menchetti, S. and Reinecke, T. (1996) Solid solution between piemontite and androsite-(La), a new mineral of the epidote group from Andros Island, Greece. American Mineralogist, 81, 735742 CrossRefGoogle Scholar
Bruker, (1999) SMART and SAINT-Plus. Versions 6.01. Bruker AXS Inc., Madison, Wisconsin, USA.Google Scholar
Cenki-Tok, B., Ragu, A., Armbruster, T., Chopin, S. and Medenbach, O. (2006) New Mn- and rare-earth-rich epidote-group minerals in metacherts: manganiandrosite-( Ce) and vanadoandrosite-(Ce). European Journal of Mineralogy, 18, 569582 CrossRefGoogle Scholar
Dollase, W.A. (1968) Refinement and comparison of the structures of zoisite and clinozoisite. American Mineralogist, 53, 18821898 Google Scholar
Dollase, W.A. (1969) Crystal structure and cation ordering of piemontite. American Mineralogist, 54, 710717 Google Scholar
Evans, H.T., Jr. (1969) Vanadium. In: Handbook of Geochemistry II/2. 23-A (K.H. Wedepohl, ed.). Springer-Verlag, Berlin.Google Scholar
Franks, F. (editor) (1973) Water: A Comprehensive Treatise, vol. 2, 684 pp. Plenum, New York.Google Scholar
Fujinaga, K., Nozaki, T., Nakayama, K. and Kato, Y. (2011) Rare earth resource potential of the Aki strata-bound Fe-Mn deposit in the Northern Shimanto Belt, central Shikoku, Japan. Shigen- Chishitsu, 61, 111 (Japanese with English abstract).Google Scholar
Gieré, R. and Sorensen, S.S. (2004) Allanite and other REE-rich epidote-group minerals. Pp. 431493 in: Epidotes (A. Liebscher and G. Franz, editors). Reviews in Mineralogy and Geochemistry, Vol. 56. Mineralogical Society of America and Geochemical Society, Washington, D.C.Google Scholar
Gobla, M.J. (2012) Montana mineral locality index. Rocks and Minerals, 87, 208240 CrossRefGoogle Scholar
Holtstam, D., Andersson, U.B. and Mansfeld, J. (2003) Ferriallanite-(Ce) from the Bastna¨ s deposit, Va¨stmanland, Sweden. The Canadian Mineralogist, 41, 12331240 CrossRefGoogle Scholar
Ito, T., Morimoto, N. and Sadanaga, R. (1954) On the structure of epidote. Acta Crystallographica, 7, 5359 CrossRefGoogle Scholar
Izumi, F. and Momma, K. (2007) Three-dimensional visualization in powder diffraction. Solid State Phenomena, 130, 1520 CrossRefGoogle Scholar
Kato, A., Shimizu, M., Okada Y., Komuro, Y. and Takeda, K. (1994) Vanadium-bearing spessartine and allanite in the manganese-iron ore from the Odaki orebody of the Kyurazawa Mine, Ashio Town, Tochigi Prefecture, Japan. Bulletin of the National Science Museum. Series C, Geology & Paleontology, 20, 112 Google Scholar
Kato, Y., Fujinaga, K., Nozaki, T., Osawa, H., Nakamura, K. and Ono, R. (2005) Rare earth, major and trace elements in the Kunimiyama ferromanganese deposit in the Northern Chichibu belt, Central Shikoku, Japan. Resource Geology, 55, 291299 CrossRefGoogle Scholar
Langer, K., Tillmanns, E., Kersten, M., Almen, H. and Arni, R.K. (2002) The crystal chemistry of Mn3+ in the clino- and orthozoisite structure types, Ca2M3+ 3 [OH/O/SiO4/Si2O7]: A structural and spectroscopic study of some natural piemontites and “thulites” and their synthetic equivalents. Zeitschrift für Kristallographie, 217, 563580 Google Scholar
Mills, S.J., Hatert, F., Nickel, E.H. and Ferraris, G. (2009) The standardisation of mineral group hierarchies: application to recent nomenclature proposals. European Journal of Mineralogy, 21, 10731080 CrossRefGoogle Scholar
Miyawaki, R., Tokoyama, K., Matsubara, S., Tsutsumi, Y. and Goto, A. (2008) Uedaite-(Ce), a new member of the epidote group with Mn at the A site, from Shodoshima, Kagawa Prefecture, Japan. European Journal of Mineralogy, 20, 261269 CrossRefGoogle Scholar
Momma, K. and Izumi, F. (2011) VESTA 3 for threedimensional visualization of crystal, volumetric and morphology data. Journalo f Applied Crystallography, 44, 12721276 CrossRefGoogle Scholar
Moriyama, T., Miyawaki, R., Yokoyama, K., Matsubara, S., Hirano, H., Murakami, H. and Watanabe, Y. (2010) Wakefieldite-(Nd), a new neodymium vanadate mineral in the Arase Stratiform ferromanganese deposit, Kochi Prefecture, Japan. Resource Geology, 61, 101110 CrossRefGoogle Scholar
Nagashima, M. and Akasaka, M. (2004) An X-ray Rietveld study of piemontite on the join Ca2Al3Si3O12(OH) – Ca2Mn3+ 3 Si3O12(OH) formed by hydrothermal synthesis. American Mineralogist, 89, 11191129 CrossRefGoogle Scholar
Nagashima, M. and Akasaka, M. (2010) X-ray Rietveld and 57Fe Mö ssbauer studies of epidote and piemontite on the join Ca2Al3Si3O12(OH) – Ca2Al2Fe3+Si3O12(OH) – Ca2Al2Mn3+Si3O12(OH) formed by hydrothermal synthesis. American Mineralogist, 95, 12371246 CrossRefGoogle Scholar
Nagashima, M., Geiger, C.A. and Akasaka, M. (2009) A crystal-chemical investigation of clinozoisite synthesized along the join Ca2Al3Si3O12(OH)- Ca2Al2CrSi3O12(OH). American Mineralogist, 94, 13511360 CrossRefGoogle Scholar
Nagashima, M., Armbruster, T., Akasaka, M. and Minakawa, T. (2010) Crystal chemistry of Mn2+-, Sr-rich and REE-bearing piemontite from the Kamisugai mine in the Sambagawa metamorphic belt, Shikoku, Japan. Journal of Mineralogical and Petrological Sciences, 105, 142150 CrossRefGoogle Scholar
Nagashima, M., Armbruster, T., Herwegh, M., Pettke, T., Lahti, S. and Grobéty, B. (2011a) Severe structural damage in Cr- and V-rich clinozoisite: relics of an epidote-group mineral with Ca2Al2Cr3+Si3O12(OH) composition? European Journal of Mineralogy, 23, 731743 Google Scholar
Nagashima, M., Imaoka, T. and Nakashima, K. (2011b) Crystal chemistry of Ti-rich ferriallanite-(Ce) from Cape Ashizuri, S hikoku Island, Japan. American Mineralogist, 96, 18701877 CrossRefGoogle Scholar
Nishio-Hamane, D., Tomita, N., Minakawa, T. and Inaba, S. (2013) Iseite, Mn2Mo3O8, a new mineral from Ise, Mie Prefecture, Japan. Journal of Mineralogical and Petrological Sciences, 108, 3741 CrossRefGoogle Scholar
Pan, Y. and Fleet M.E. (1991) Vanadian allanite-(La) and vanadian allanite-(Ce) from the Hemlo gold deposit, Ontario, Canada. Mineralogical Magazine, 55, 497507 CrossRefGoogle Scholar
Robinson, K., Gibbs, G.V. and Ribbe, P.H. (1971) Quadratic elongation: a quantitative measure of distortion in coordination polyhedra. Science, 172, 567570 CrossRefGoogle ScholarPubMed
Schindler, M., Hawthorne, F.C. and Baur, W.H. (2000) Chrystal chemical aspects of vanadium: polyhedral geometries, characteristic bond valences, and polymerization of (VOn) polyhedra. Chemistry of Material, 12, 12481259.CrossRefGoogle Scholar
Škoda, R., Cempírek, J., Filip, J., Novák, M., Veselovský, F. and Čtvrtlík, R. (2012) Allanite- (Nd), CaNdAl2Fe2+(SiO4)(Si2O7)O(OH), a new mineral from Å skagen, Sweden. American Mineralogist, 97, 983988 CrossRefGoogle Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A32, 751767 CrossRefGoogle Scholar
Sheldrick, G.M. (1996) SADABS. University of Gö ttingen, Germany.Google Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112122 CrossRefGoogle Scholar
Shepel, A.B. and Karpenko, M.V. (1969) Mukhinite, a new variety of epidote. Doklady Akademii Nauk SSSR, 185, 13421345 (in Russian).Google Scholar
Uher, P., Kováčk, M., , Kubiš Shtukenberg, A. and Ozdín, D. (2008) Metamophic vanadian-chromian silicate mineralization in carbon-rich amphibole schist from the Maleˆ Karpaty Mountains, Western Carpathians, Slovakia. American Mineralogist, 93, 6373 CrossRefGoogle Scholar