Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-10T08:11:38.235Z Has data issue: false hasContentIssue false

Westerveldite from Igdlúnguaq, Ilímaussaq alkaline massif, South Greenland1

Published online by Cambridge University Press:  05 July 2018

I. S. Oen
Affiliation:
Geologisch Instituut der Universiteit van Amsterdam
E. A. J. Burke
Affiliation:
Instituut voor Aardwetenschappen der Vrije Universiteit
C. Kieft
Affiliation:
Nederlandse Organisatie voor Zuiver Wetenschappelijk Onderzoek (ZWO)

Summary

Microprobe and X-ray investigation of a mineral occurring with breithauptite, nickeline, and other arsenides in the naujaite at Igdlúnguaq, Ilímaussaq alkaline massif, S. Greenland, shows that this mineral, which was formerly misidentified as ‘maucherite’, is a westerveldite (Fe0·85Ni0·15)As, of much iron-richer composition than the nickeloan westerveldites from the only two other known occurrences of this mineral. Westerveldite from Igdlúnguaq was presumably formed by reaction of nickeline with iron-rich solutions under conditions of reheating at temperatures of about 450° C and under partial pressures of arsenic below those necessary to stabilize nickeline. Sulphur-bearing löllingite occurs as exsolution blades in the westerveldite. Iron-rich nickeline, up to a composition (Ni0·82Fe0·18)As0·95Sb0·05, was presumably formed by recrystallization of nickeline in the transition stage just before this mineral became unstable and was replaced by westerveldite.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1977

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

Contribution to the mineralogy of Ilímaussaq no. 44.

References

Buseck, (P. R.), 1963. Carnegie but. Washington, Year Book 62, 200–10.Google Scholar
Hawley, (J. E.) and Hewitt, (D. F.), 1948. Econ, Geol. 43, 273–9.CrossRefGoogle Scholar
Karup-Moller, (S.) and Mackovicky, (E.), 1976. Paper to be submitted for publication in Neues Jahrb. Mineral. Google Scholar
Maes, (R.) and De Strycker, (R.), 1967. Trans. Metall. Soc. AIME 239, 1887–94.Google Scholar
Oen, (I. S.), Burke, (E. A. J.), Kieft, (G), and Westerhof, (A. B.), 1971. Neues Jahrb. Mineral, Abh. 115, 123–39.Google Scholar
Oen, (I. S.), Burke, (E. A. J.), Kieft, (G), and Westerhof, (A. B.), 1972. Am. Mineral. 57, 354–63.Google Scholar
Oen, (I. S.), Burke, (E. A. J.), Kieft, (G), and Westerhof, (A. B.), and Sorensen, (H.), 1964. Medd. Grenland, 172-1, 1–50.Google Scholar
Petruk, (W.), Harris, (D. C), and Stewart, (J. M.), 1969. Can. Mineral. 9, 597–616.Google Scholar
Roseboom, (E. H.), 1962. Am. Mineral. 47, 310–27.Google Scholar
Sizgoric, (G.) and Duesing, (C. M.), 1973. Canad. Mineral. 12, 137–8.Google Scholar
Springer, (G.), 1967. Fortschr. Mineral. 45, 103–14.Google Scholar
Strunz, (H.), 1970. Mineralogische Tabellen, 5th edn., Leipzig (Geest und Portig).Google Scholar
Uytenbogaardt, (W.) and Burke, (E. A. J.), 1971. Tables for microscopic identification of ore minerals, 2nd edn., Amsterdam (Elsevier).Google Scholar
Yund, (R. A.), 1961. Econ. Geol. 56, 1273–96.CrossRefGoogle Scholar