Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T21:45:00.416Z Has data issue: false hasContentIssue false

Yaroshevskite, Cu9O2(VO4)4Cl2, a new mineral from the Tolbachik volcano, Kamchatka, Russia

Published online by Cambridge University Press:  05 July 2018

I. V. Pekov*
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
N. V. Zubkova
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
M. E. Zelenski
Affiliation:
Institute of Experimental Mineralogy of the Russian Academy of Sciences, 142432 Chernogolovka, Moscow Oblast, Russia
V. O. Yapaskurt
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
Yu. S. Polekhovsky
Affiliation:
Faculty of Geology, St Petersburg State University, University Embankment 7/9, 199034 St Petersburg, Russia
O. A. Fadeeva
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
D. Yu. Pushcharovsky
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
*

Abstract

A new mineral, yaroshevskite, ideally Cu9O2(VO4)4Cl2, occurs in sublimates collected from the Yadovitaya fumarole at the Second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption, Tolbachik volcano, Kamchatka, Russia. It is associated with euchlorine, fedotovite, hematite, tenorite, lyonsite, melanothallite, atlasovite, kamchatkite and secondary avdoninite, belloite and chalcanthite. Yaroshevskite forms isolated prismatic crystals, up to 0.1 × 0.15 × 0.3 mm in size, on the surface of euchlorine crusts. The mineral is opaque and black, with a reddish black streak and lustre between metallic and adamantine. Yaroshevskite is brittle, no cleavage was observed and the fracture is uneven. The Mohs hardness is ~3½ (corresponding to a mean VHN micro-indentation hardness of 172 kg mm -2) and the calculated density is 4.26 g cm-3. In reflected light, yaroshevskite is grey with a weak bluish hue. Pleochroism, internal reflections and bireflectance were not observed. Anisotropy is very weak. The composition (wt.%) determined by electron microprobe is: CuO 61.82, ZnO 0.53, Fe2O3 0.04, V2O531.07, As2O50.32, MoO3 1.56, Cl 6.23, O=Cl2 1.41; total 100.16. The empirical formula, calculated on the basis of 20 (O + Cl) anions is (Cu8.80 Zn0.07 Fe0.01)Σ 8.88(V3.87Mo0.12As0.03)σ 4.02O18.01Cl1.99. Yaroshevskite is triclinic, space group P, a = 6.4344(11), b = 8.3232(13), c = 9.1726(16) Å , α = 105.338(14), β = 96.113(14), γ = 107.642(1)°, V = 442.05(13) Å3 and Z = 1. The nine strongest reflections in the X-ray powder pattern [dobs in Å (I)(hkl)] are as follows: 8.65(100)(001); 6.84(83)(01); 6.01(75)(100); 5.52(60)(01); 4.965(55)(011); 4.198(67)(1); 4.055(65)(110); 3.120(55)(021); 2.896(60)(21,003,20). The crystal structure was solved by direct methods from single-crystal X-ray diffraction data and refined to R = 0.0737. The yaroshevskite structure is unique. It is based on corrugated layers made up of chains of edge-sharing flat squares with central Cu2+ cations [Cu(1), Cu(4) and Cu(5)]; neighbouring chains are connected via groups consisting of three Cu2+ -centred squares [two Cu(3) and Cu(6)]. Neighbouring layers are connected via pairs of Cu(2)O4Cl five-coordinate polyhedra and isolated VO4 tetrahedra. The structure of yaroshevskite can also be considered in terms of oxygen-centred tetrahedra: O(7)Cu4 tetrahedra are connected via common Cu(4) and Cu(5) vertices to form pyroxene-like chains [O2Cu6]. In this context, the structural formula can be written Cu3[O2Cu6][VO4]4Cl2. The mineral name honours the Russian geochemist Alexei A. Yaroshevsky (b. 1934) of Moscow State University.

Type
Letter
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berlepsch, P., Armbruster, T., Brugger, J., Bykova, E.Y. and Kartashov, P.M. (1999) The crystal structure of vergasovaite Cu3O[(Mo,S)O4SO4], and its relation to synthetic Cu3O[MoO4]2 . European Journal of Mineralogy, 11, 101110.CrossRefGoogle Scholar
Cesari, M., Perego, G., Zazzetta, A., Manara, G. and Notari, B. (1971) The crystal structures of the bismuth molybdovanadates and of the alpha-phase bismuth molybdate. Journal of Inorganic and Nuclear Chemistry, 33, 35953597.CrossRefGoogle Scholar
Darriet, B. and Galy, J. (1973) Une nouvelle structure a tunnels: KxVxMo1–xO3 (x = 0.13). Journal of Solid State Chemistry, 8, 189194.CrossRefGoogle Scholar
Fedotov, S.A. and Markhinin, Y.K. (editors) (1983) The Great Tolbachik Fissure Eruption. Cambridge University Press, New York.Google Scholar
Glavatskikh, S.F. (1982) Shcherbinaite from the gas filtration zone in volcanites of the Great Tolbachik Fissure Eruption (GTFE) at Kamchatka. Doklady Akademii Nauk SSSR, 262, 194195.Google Scholar
Holland, T.J.B. and Redfern, S.A.T. (1997) Unit cell refinement from powder diffraction data: the use of regression diagnostics. Mineralogical Magazine, 61, 6577.CrossRefGoogle Scholar
Hughes, J.M. and Birnie, R.W. (1980) Ziesite, b- Cu2V2O7, a new copper vanadate and fumarole temperature indicator. American Mineralogist, 65, 11461149.Google Scholar
Hughes, J.M., Drexler J.W., Campana, C.F. and Malinconico, M.L. (1988) Howardevansite, NaCu2+Fe3+ 2 (VO4)3– 3 , a new fumarolic sublimate from Izalco volcano,, El Salvador: descriptive mineralogy and crystal structure. American Mineralogist, 73, 181186.Google Scholar
Kozlowski, R. and Stadnicka, K. (1981) Defect structures in the brannerite-type vanadates. IV. The crystal structure of Mn1–xØxV2–2. Mo2xO6, x = 0.53. Journal of Solid State Chemistry, 39, 271276.CrossRefGoogle Scholar
Krivovichev, S.V. (2009) Structural Crystallography of Inorganic Oxysalts. Oxford University Press, Oxford, UK.CrossRefGoogle Scholar
Krivovichev, S.V., Filatov, S.K., Semenova, T.F. and Rozhdestvenskaya, I.V. (1998) Crystal chemistry of inorganic compounds based on chains of oxocentered tetrahedra. I. Crystal structure of chloromenite, Cu9O2(SeO3)4Cl6. Zeitschrift für Kristallographie, 213, 645649.Google Scholar
Krivovichev, S.V., Vergasova, L.P., Britvin, S.N., Filatov, S.K., Kahlenberg, V. and Ananiev, V.V. (2007) Pauflerite, b-VO(SO4), a new mineral from the Tolbachik volcano, Kamchatka Peninsula, Russia. The Canadian Mineralogist, 45, 921927.CrossRefGoogle Scholar
Pekov, I.V., Zelenski, M.E., Yapaskurt, V.O., Polekhovsky, Yu.S. and Murashko, M.N. (2012) Starovaite, IMA 2011-085. CNMNC Newsletter No. 12, February 2012, page 153; Mineralogical Magazine, 76, 151155.Google Scholar
Pekov, I.V., Zubkova, N.V., Chernyshov, D.Yu., Zel e ns k i , M. E . , Yapask u r t , V.O. and Pushcharovsky, D.Yu. (2013) A new Cu-rich variety of lyonsite from fumarole sublimates of the Tolbachik volcano (Kamchatka, Russia) and its crystal structure. Doklady Earth Sciences, 448(1), 112116.CrossRefGoogle Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112122.CrossRefGoogle Scholar
Siidra, O.I., Krivovichev, S.V., Armbruster, T., Filatov, S.K. and Pekov, I.V. (2007) The crystal structure of leningradite, PbCu3(VO4)2Cl2 . The Canadian Mineralogist, 45, 445449.CrossRefGoogle Scholar
Starova, G.L., Krivovichev, S.V., Fundamenskii, V.S. and Filatov, S.K. (1997) The crystal structure of averievite, Cu5O2(VO4)2·nMX: comparison with related compounds. Mineralogical Magazine, 61, 441446.CrossRefGoogle Scholar
Szillat, H. and Müller-Buschbaum, H. (1995) Ein Silber- Kupfer-Oxovanadato-Oxomolybdat mit Silber in quadratisch-planarer Koordination: Ag0.5Cu3V0.5 Mo2.5O12. Zeitschrift für Naturforschung, Teil B. Anorganische Chemie, Organische Chemie, 50, 879883.Google Scholar
Varaksina, T.V., Fundamenskii, V.S., Filatov, S.K. and Vergasova, L.P. (1990) The crystal structure of kamchatkite, a new naturally occuring oxychloride sulphate of potassium and copper. Mineralogical Magazine, 54, 613616.CrossRefGoogle Scholar
Vergasova, L.P. and Filatov, S.K. (1993) Minerals of volcanic exhalations – a new genetic group (after the data of Tolbachik volcano eruption in 1 9 7 5–1. 9 7 6 ). Zapiski Vserossiiskogo Mineralogicheskogo Obshchestva, 122, 6876. [in Russian].Google Scholar
Vergasova, L.P., Filatov, S.K., Semenova, T.F. and Ananiev,V.V. (1990) Leningradite , PbCu3(VO4)2Cl2, a new mineral of volcanic exhalations. Doklady Akademii Nauk SSSR, 310, 14341437. [in Russian].Google Scholar
Vergasova, L.P., Starova, G.L., Filatov, S.K. and Ananiev,V.V. (1998) Averievite Cu5O2(VO4)2·nMX – a new mineral of volcanic exhalations. Doklady Akademii Nauk SSSR, 359, 804807. [in Russian].Google Scholar
Wang, X., Stern, C.L. and Pöppelmeier, K.R. (1996) Phase relations in the MgMoO4–Mg3V2O8 system and crystal structure of Mg2.54V1.08Mo0.92O8. Journal of Alloys and Compounds, 243, 5158.CrossRefGoogle Scholar
Wang, X.-D., Norquist, A.J., Pless, J., Stern, C.L., Van der Griend, D.A. and Pöppelmeier, K.R. (2002) Crystal growth and co-substitution i n (Mg1–xFex)(Mo2–xVx)O7 (0.13 < x < 0.47) with (V/Mo)=O oxo double bonds. Journal of Alloys and Compounds, 338, 2631.CrossRefGoogle Scholar
Zelenski, M.E., Zubkova, N.V., Pekov, I.V., Boldyreva, M.M., Pushcharovsky, D.Yu. and Nekrasov, A.N. (2011) Pseudolyonsite, Cu3(VO4)2, a new mineral species from the Tolbachik volcano, Kamchatka Peninsula, Russia. European Journal of Mineralogy, 23, 475481.CrossRefGoogle Scholar
Zelenski, M.E., Zubkova, N.V., Pekov, I.V., Polekhovsky, Yu.S. and Pushcharovsky D.Yu. (2012) Cupromolybdite, Cu3O(MoO4)2, a new fumarolic mineral from the Tolbachik volcano, Kamchatka Peninsula, Russia. European Journal of Mineralogy, 24, 749757.CrossRefGoogle Scholar
Zema, M., Ghigna, P. and Tarantino, S.C. (2007) Lowalkali metal content in beta-vanadium mixed bronzes: The crystal structures of beta- Kx(V,Mo)6O15 (x = 0.23 and 0.32) by single-crystal X-ray diffraction. Journal of Solid State Chemistry, 180, 577582.CrossRefGoogle Scholar