Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T11:53:26.429Z Has data issue: false hasContentIssue false

Zirconium and niobium-bearing ilmenites from the Igaliko dyke swarm, South Greenland

Published online by Cambridge University Press:  05 July 2018

N. J. G. Pearce*
Affiliation:
Institute of Earth Studies, University College of Wales, Aberystwyth, Dyfed, SY23 3DB, Wales, U.K.

Abstract

Ilmenites from alkaline basic dykes in the Gardar province, south Greenland have Zr contents up to 3850ppm and Nb contents up to 1030ppm. These elements substitute for Ti in the octahedral site. These are amongst the highest recorded Zr and Nb contents for ilmenites, giving distribution coefficients (Kdilmenite/matrix) for Zr up to 11.6 and Nb up to 70.3. Fractionation of ilmenite may thus have a dramatic effect on residual Zr and Nb contents. These effects are discussed in relation to the use of trace element tectonomagmatic discrimination diagrams.

Type
Mineralogy and Petrology
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blank, G., El Goresy, A., Janicke, J., Nobiling, R., and Traxel, K. (1984) Partitioning of Zr and Nb between coexisting opaque phases in lunar rocks—determined by quantitative proton microprobe analysis. Earth. Planet. Sci. Len. 68, 19-63.CrossRefGoogle Scholar
El Goresy, A., Ramdhor, P., and Taylor, L. A. (1971) The geochemistry of the opaque minerals in Apollo 14 crystalline rocks. Ibid. 13, 121-9.CrossRefGoogle Scholar
Emeleus, C. H. and Harry, W. T. (1970) The Igaliko Nepheline Syenite Complex. Bull. Grønl. Geol. Unders. 85 (als. Medel. Grønl. 186 , No. 3) 116 pp.Google Scholar
Floyd, P. A. and Winchester, J. A. (1975) Magma type and tectonic setting discrimination using immobile elements. Earth. Planet. Sci. Lett. 27 211-18CrossRefGoogle Scholar
Meschede, M. (1986) A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites using the Nb-Zr-Y diagram. Chem. Geol. 56, 206-18.CrossRefGoogle Scholar
Pearce, J. A. and Cann, J. R. (1973) Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth. Planet. Sci. Lett. 19, 290-300.CrossRefGoogle Scholar
Pearce, J. A. and Norry, M. J. (1979) Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contrib. Mineral. Petrol. 69, 33-47.CrossRefGoogle Scholar
Pearce, N. J. G. (1988) The Petrology and Geochemistry of the lgaliko Dyke Swarm, South Greenland. Unpubl. PhD Thesis, University of Durham.Google Scholar
Shannon, R. D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A, 32, 751-67.CrossRefGoogle Scholar
Taylor, L. A. and McCallister, R. H. (1972) An experimental investigation of the significance of zirconium partitioning in lunar ilmenite and ulvöspinel. Earth. Planet. Sci. Lett. 17, 105-9.CrossRefGoogle Scholar
Upton, B. G. J. and Emeleus, C. H. (1987) Mid-Proterozoic alkaline magmatism in Southern Greenland: the Gardar Province. In Alkaline Igneous Rocks (Fitton, J. G. and Upton, B. G. J., eds.) Geol. Soc. Spec. Publ. No. 30.Google Scholar
Upton, B. G. J., Fitton, J. G. (1985) Gardar dykes north of the Igaliko Syenite complex, Southern Greenland. Rapp. Grønl. Geol. Unders. 127.Google Scholar
Wood, D. A., Joron, J. L., and Treuil, M. (1979) A re-appraisal of the use of trace elements to classify and discriminate between magma series erupted in different tectonic settings. Earth. Planet. Sci. Lett. 45, 326-36.CrossRefGoogle Scholar