Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-15T09:05:20.615Z Has data issue: false hasContentIssue false

Adsorption mechanism of acid orange 7 on photocatalytic materials based on TiO2

Published online by Cambridge University Press:  23 December 2019

A. Arteaga-Jiménez*
Affiliation:
Instituto Politécnico Nacional, CICATA Querétaro
A. I. Caudana-Campos
Affiliation:
Instituto Politécnico Nacional, CICATA Querétaro
A. L. García-García
Affiliation:
Instituto Politécnico Nacional, CICATA Querétaro
E. Hernández-Zapata
Affiliation:
Dpto. De Recursos de la Tierra, Universidad Autónoma Metropolitana, unidad Lerma
M. A. Vidales-Hurtado
Affiliation:
Instituto Politécnico Nacional, CICATA Querétaro
*
Get access

Abstract

The degradation of organic molecules in an aqueous medium using heterogeneous photocatalysis depends on the chemical composition and concentration of the organic compound, the crystalline and morphological nature of the photocatalyst, the pH of the dye dilution, and the reaction temperature. Since photocatalytic degradation is a process that occurs on the surface of the catalytic material, it is desirable to induce maximum adsorption of the organic compound. One strategy to achieve this is to functionalize the surface of the catalyst to retain the molecule of interest. In this work, we studied the interaction of acid orange 7 (AO7) with commercial TiO2-anatase powder catalyst, and with a catalyst synthesized in house using titanium tetrachloride and ethanolamine (TiO2-et). Our results indicate that there is no adsorption of the AO7 dye on the TiO2-et particles. The infrared spectrum of the TiO2-et particles is presented.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES:

Yu, J. C., Ho, W., Lin, J., Yip, H. and Wong, P. K. Environ. Sci. Technol, 37(10), 2296 (2003).CrossRefGoogle Scholar
Kayano, S., Yoshihiko, K., Kazuhito, H. and Akira, F., Environ. Sci. Technol, 33(5), 726 (1998).Google Scholar
Hoffmann, M. R., Martin, S. T., Choi, W. and Bahnemann, W. Chem. Rev. , 95, 69 (1995).CrossRefGoogle Scholar
Ibhadon, A. O., Fitzpatrick, P. Catalysis, 3, 189 (2013).Google Scholar
Makowski, A., Wardas, W. Current Topics in Biophysics, 25(1), 19 (2001).Google Scholar
Abdennouri, M. et al. Journal of Saudi Chemical Society, 19, 485 (2015).CrossRefGoogle Scholar
Lhomme, L., Brosillon, S., Wolbert, D. Chemosphere, 70(3), 381 (2008).CrossRefGoogle Scholar
Fosso-Kankeu, E., Waanders, F., Heldenhuys, M. 7th International Conference on Latest in Engineering and Technology , ISBN 978-93-84422-58-2, (2015).Google Scholar
Eggins, B. R., Palmer, F. L., Byrne, J. A. Water Research, 31(5), 1223 (1997).CrossRefGoogle Scholar
Colmenares, J. C.. ed. and Xu, Y. Springer, 1st ed., (2016).Google Scholar
Tasbihi, M. et al. Journal of Photochemistry and Photobiology A: Chemistry, 366, 72 (2018).CrossRefGoogle Scholar
Einaga, H., Ibusuki, T., Futamura, S. Environ. Sci. Technol., 38, 285 (2004).CrossRefGoogle Scholar
Bowker, M., Sharpe Catalysis, R., Structure & Reactivity., 3(1), 140 (2015).CrossRefGoogle Scholar
Chen, L. C. and Huang, C. M. Journal of Molecular Catalysis A: Chemical, 265(1-2), 133 (2007).CrossRefGoogle Scholar
Klosek, S. and Raftery, D. J. Phys. Chem. B, 105(14), 2815 (2001).CrossRefGoogle Scholar
Wang, Q. et al. Journal of Nanoparticle Research, 19(2), 72 (2017).CrossRefGoogle Scholar
Serpone, N. J. Phys. Chem. B , 110(48), 24287 (2006).CrossRefGoogle Scholar
Zhang, D. Acta Chimica Slovaca , 6(1), 141 (2013).CrossRefGoogle Scholar
Kanakaraju, D., Ravichandar, S., Lim, Y.C. Journal of Environmental Sciences , 55, 214 (2017).CrossRefGoogle Scholar
Riboni, F., Bettini, L. G., Bahnemann, D. W. and Selli, E. Catalysis Today , 209, 28 (2013).CrossRefGoogle Scholar
Torimoto, T., Ito, S., Kuwabata, S. and Yoneyama, H. Environ. Sci. Technol. , 30(4), 1275 (1996).CrossRefGoogle Scholar
Hadjltaief, H. B., Galvez, M. E., Zina, M. B. and Da Costa, P. Arabian Journal of Chemistry , 1, (2014).Google Scholar
Bénézeth, P., Wesolowski, D. J. J. Solution Chem , 38, 925 (2009).CrossRefGoogle Scholar
Mattigod, S. V. et al. Environ. Sci. Technol. , 39, 7306 (2005).CrossRefGoogle Scholar
Bourikas, K., Stylidi, M., Kondarides, D. I. and Verykios, X. E. Langmuir , 21, 9222 (2005).CrossRefGoogle Scholar
Lützenkirchen, J. et al. Croat. Chem. , 85(4), 391 (2012).CrossRefGoogle Scholar
Kotsokechagia, T., Cellesi, F., Thomas, A., Niederberger, M. and Tirelli, N. Langmuir , 24, 6988 (2008).CrossRefGoogle Scholar
Schubert, U. Acc. Chem. Res., 40, 730 (2007).CrossRefGoogle Scholar
Velasco, M. J., Rubio, F., Rubio, J., Oteo, J. L. Spectroscopy Letters, 32(2), 289 (1999).CrossRefGoogle Scholar
Praveen, P., Viruthagiri, G., Mugundan, S., Shanmugam, N., Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 117, 622 (2014).CrossRefGoogle Scholar
Iravani, E., Allahyari, S. A., Shojaei, Z., Mostaedi, T., J. Braz. Chem. Soc., 26(8), 1608 (2015).Google Scholar
Chiu, Y. H., Chang, T. F. M., Chen, C. Y., Sone, M., Hsu, Y. J. Catalysts , 9(5), 430 (2019).CrossRefGoogle Scholar
Stylidi, M., Kondarides, D. I., Verykios, X. E. Applied Catalysis B. Environmental , 47, 189 (2004)CrossRefGoogle Scholar