Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-28T18:55:55.294Z Has data issue: false hasContentIssue false

Anomalous Raman Scattering In Few Monolayer MoTe2

Published online by Cambridge University Press:  16 January 2017

Katarzyna Gołasa
Affiliation:
Faculty of Physics, University of Warsaw, PL-02-093 Warszawa, Poland.
Magdalena Grzeszczyk
Affiliation:
Faculty of Physics, University of Warsaw, PL-02-093 Warszawa, Poland.
Maciej R. Molas
Affiliation:
Laboratoire National des Champs Magnetiques Intenses, F-38042 Grenoble, France.
Małgorzata Zinkiewicz
Affiliation:
Faculty of Physics, University of Warsaw, PL-02-093 Warszawa, Poland.
Karol Nogajewski
Affiliation:
Laboratoire National des Champs Magnetiques Intenses, F-38042 Grenoble, France.
Marek Potemski
Affiliation:
Laboratoire National des Champs Magnetiques Intenses, F-38042 Grenoble, France.
Andrzej Wysmołek
Affiliation:
Faculty of Physics, University of Warsaw, PL-02-093 Warszawa, Poland.
Adam Babiński*
Affiliation:
Faculty of Physics, University of Warsaw, PL-02-093 Warszawa, Poland.
*
Get access

Abstract

The effect of temperature (5K to 300K) on the Raman scattering due to A1g/A1’ modes associated with the out-of-plane vibrations in bilayer (2L) and trilayer (3L) MoTe2 is investigated. The temperature evolution of the modes critically depends on the flake thickness. The A1g mode intensity in 2L MoTe2 observed with λ=632.8 nm light excitation decreases with decreasing temperature down to 220K and the mode vanishes from the Stokes scattering spectrum in the temperature range between 160K and 220K. The peak recovers at lower temperatures and at T=5K it becomes three times more intense that at room temperature. Similar non-monotonic intensity evolution is observed for the A1’ mode in 3L MoTe2 in which tellurium atoms in all three layers vibrate in-phase. On the contrary, the intensity of the other out-of-plane Raman-active mode in which vibrations of tellurium atoms in the central layer of 3L MoTe2 are shifted by 180° with respect to vibrations in outer layers, only weakly depends on temperature.

The observed quenching of the out-of-plane modes in the Raman scattering in thin MoTe2 layers is related to the destructive interference of the resonant- and the non-resonant contributions to the Raman scattering. The resonance with the M point of the Brillouin zone in few-layers of MoTe2 is considered. Effects related to the resonant quenching of the in-phase out-of-plane mode are discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Butler, S. Z., Hollen, S. M., Cao, L., et al. , ACS Nano 7, 2898 (2013).Google Scholar
Wang, Q. H., Kalantar-Zadeh, K., Kis, A., et al. ., Nat. Nanotechnol. 7, 699 (2012).Google Scholar
Novoselov, K. S., Jiang, Z., Zhang, Y., et al. ., Science 315, 1379 (2007).Google Scholar
Splendiani, A., Sun, L., Zhang, Y., et al. ., Nano Lett., 10, 1271 (2010).Google Scholar
Late, D. J., Liu, B., Luo, J., et al. ., Adv. Mater. 24, 3549 (2012).Google Scholar
Jariwala, D., Sangwan, V. K., Lauhon, L. J., et al. ., ACS Nano 8, 1102 (2014).Google Scholar
Mak, K. F., McGill, K. L., Park, J., and McEuen, P. L., Science 344, 1489 (2014).CrossRefGoogle Scholar
Zhang, X., Han, W. P., Wu, J. B., et al. ., Phys. Rev. B 87, 115413 (2013).Google Scholar
Zhao, Y. Y., Luo, X., Li, H., et al. ., Nano Letters 13, 1007 (2013).Google Scholar
Livneh, T. and Sterer, E., Phys. Rev. B 81, 195209 (2010).Google Scholar
Livneh, T., 2D Mater. 2, 035003 (2015).Google Scholar
Fan, J.H., J. Appl. Phys. 115, 053527 (2014).Google Scholar
del Corro, E., Terrones, H., Elias, A., et al. ., ACS Nano 8, 9629 (2014).Google Scholar
Carvalho, B. R., Malard, L. M., Alves, J. M., et al. ., Phys. Rev. Lett. 116, 089904 (2016).Google Scholar
Gołasa, K., Grzeszczyk, M., Leszczyński, P., et al. ., Appl. Phys. Lett. 104, 092106 (2014).Google Scholar
Grzeszczyk, M., Gołasa, K., Zinkiewicz, M., et al. ., 2D Mater. 3, 025010 (2016).Google Scholar
Froehlicher, G., Lorchat, E., Fernique, F., et al. ., Nano Lett. 15, 6481 (2015).Google Scholar
Kim, K., Lee, J.-U., Nam, D., and Cheong, H., ACS Nano 10, 8113 (2016).CrossRefGoogle Scholar
Tonndorf, P. et al. Opt. Express 21 4908 (2013).Google Scholar
Staiger, M., et al. . Phys. Rev. B, 91, 195419 (2015).Google Scholar
Song, Q. J., Tan, Q. H., Zhang, X., et al. ., Phys. Rev. B 93, 115409 (2016).Google Scholar
Gołasa, K. et al. ., Nanophotonics, doi:10.1515/nanoph-2016-0150.Google Scholar
Castellanos-Gomez, A., Buscema, M., Molenaar, R., et al. ., 2D Mater. 1, 011002 (2014).Google Scholar
Yu, P. and Cardona, M., Fundamentals of Semiconductors, (Springer-Verlag, 1999) p. 390.Google Scholar
Soubelet, P., Bruchhausen, A. E., Fainstein, A., et al. ., Phys. Rev. B 93, 155407 (2016).Google Scholar
Lewis, L., Wadsack, R. L., and Chang, R. K., in Light Scattering in Solids, edited by Balkanski, M. (Flammarion, 1971), p. 41.Google Scholar
Ralston, J. M., Wadsack, R. L., and Chang, R. K., Phys. Rev. Lett. 25, 814 (1970).Google Scholar
Damen, T.C. and Scott, J.F., Solid State Comm. 9, 383 (1971).Google Scholar
Lee, M.C., Huang, C.R., Watson Yang, T.J., et al. ., Solid State Comm. 71, 899 (1989).Google Scholar
Guo, H., Yang, T., Yamamoto, M., et al. ., Phys. Rev. B 91, 205415 (2015).Google Scholar
Padilha, J. E., Peelaers, H., Janotti, A., and Van de Walle, C. G., Phys. Rev. B 90, 205420 (2014).Google Scholar
Kormányos, A., Burkard, G., Gmitra, M., et al. ., 2D Mater. 2, 049501 (2015).Google Scholar