Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-14T06:49:51.630Z Has data issue: false hasContentIssue false

Atomistic Study of Deformation and Failure Behavior in Nanocrystalline Mg

Published online by Cambridge University Press:  11 April 2016

Garvit Agarwal
Affiliation:
Department of Materials Science and Engineering, and Institute of Materials Science, University of Connecticut, Storrs, CT, United States
Gabriel Paun
Affiliation:
Department of Materials Science and Engineering, and Institute of Materials Science, University of Connecticut, Storrs, CT, United States
Ramakrishna R. Valisetty
Affiliation:
Computational and Information Sciences Directorate, US Army Research Laboratory, Aberdeen Proving Ground, MD, United States
Raju Namburu
Affiliation:
Computational and Information Sciences Directorate, US Army Research Laboratory, Aberdeen Proving Ground, MD, United States
Arunachalam M. Rajendran
Affiliation:
Department of Mechanical Engineering, University of Mississippi, University, MS, United States
Avinash M. Dongare*
Affiliation:
Department of Materials Science and Engineering, and Institute of Materials Science, University of Connecticut, Storrs, CT, United States
*
Get access

Abstract

Large scale molecular dynamics (MD) simulations are carried out to investigate the failure response of nanocrystalline Mg using the EAM potential under conditions of uniaxial tensile stress and uniaxial tensile strain loading. The MD simulations are carried out at a strain rate of 109s-1 for grain sizes in the range of 10 nm to 30 nm. The effect of grain size on the strength of the metal is investigated and the critical grain size for transition to inverse Hall-Petch regime is identified.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Hazell, P.J., Appleby-Thomas, G.J., Wielewski, E., and Escobedo, J.P., Philosophical Transactions Of the Royal Society A: Mathematical, Physical and Engineering Sciences 20130204 (2014).Google Scholar
Easton, M., Beer, A., Barnett, M., Davies, C., Dunlop, G., Durandet, Y., Blacket, S., Hilditch, T., and Beggs, P., JOM 57 (2008).Google Scholar
Wang, J. and Beyerlein, I.J., Modelling Simul. Mater. Sci. Eng. 20, 024002 (2012).Google Scholar
Wang, J. and Beyerlein, I.J., Metallurgical and Materials Transactions A 43, 3556 (2012).CrossRefGoogle Scholar
Wang, J., Liu, L., Tome, C.N., Mao, S.X. and Gong, S.K., Mater. Res. Lett. 1, 81 (2013).Google Scholar
Moitra, A., Computational Materials Science 79, 247 (2013).CrossRefGoogle Scholar
Zheng, G.P., Wang, Y.M. and Li, M., Acta Materialia 53, 3893 (2005).Google Scholar
Dieter, G. F., Mechanical Metallurgy, 3rd ed. McGraw Hill, New York, (1986).Google Scholar
Schiotz, J. and Jacobsen, K. W., Science 301, 1357 (2003).Google Scholar
Schiotz, J., Vegge, T., Di Tolla, F.D. and Jacobsen, K.W., Phys. Rev. B 60, 11971 (1999).CrossRefGoogle Scholar
Pan, Z., Li, Y. and Wei, Q., Acta Materialia 56, 3470 (2008).CrossRefGoogle Scholar
Schiotz, J., Di Tolla, F.D. and Jacobsen, K.W., Nature 391, 561 (1998).Google Scholar
Frederiksen, S.L., Jacobsen, K.W. and Schiotz, J., Acta Materialia 52, 5019 (2004).CrossRefGoogle Scholar
Dongare, A.M., Rajendran, A.M., LaMattina, B., Zirky, M.A. and Brenner, D.W., Phys. Rev. B. 80, 104108 (2009).Google Scholar
Tang, Y., Bringa, E.M. and Meyers, M.A., Mater. Sci. Eng.: A 580, 414 (2013).Google Scholar
Jarmakani, H., Maddox, B., Wei, C.T., Kalantar, D. and Meyers, M.A., Acta Materialia 58, 46044628 (2010).CrossRefGoogle Scholar
Sun, D.Y., Mendelev, M.I., Becker, C.A., Kudin, K., Haxhimali, T., Asta, M., Hoyt, J.J., Karma, A., and Srolovitz, D.J., Phys. Rev. B. 73, 024116 (2006).Google Scholar
Plimpton, S., Journal of Computational Physics 117, 119 (1995).CrossRefGoogle Scholar
Yasi, J.A., Nogaret, T., Trinkle, D.R., Qi, Y., Hector, L.G. Jr. and Curtin, W.A., Modelling Simul. Mater. Sci. Eng. 17, 055012 (2009).Google Scholar
Derlet, P. M. and Van Swygenhoven, H., Phys. Rev. B 67, 014202 (2003).Google Scholar
Kelchner, C. L., Plimpton, S. J., and Hamilton, J. C., Phys. Rev. B 58, 11085 (1998).CrossRefGoogle Scholar
Honeycutt, D. J. and Andersen, H. C., J. Phys. Chem. 91, 4950 (1987).Google Scholar