Article contents
Corporate Responsibility: A Green Initiative to Reduce Chlorobenzene Based Chemistries in Semiconductor Processing
Published online by Cambridge University Press: 15 January 2019
Abstract
Climate change and an increase in endangered species, are examples of technological advances negatively impacting the environment. As technology demands increase, an earnest effort to reduce the environmental impact of processing and manufacturing related activities is critical. From a business perspective, minimizing or removing toxic process chemicals is a high impact area that can increase work environment safety and decrease waste management costs. This work presents processing considerations when transitioning to greener alternative polymer resist solvents, for applications in nanomanufacturing with sustainability considerations. Within government contracting, process modifications that change product form, fit, or function require qualification and at minimum justification. This work presents the conversion from a chlorobenzene to anisole based solvent using a 495 kMW polymetheyl methacrylate polymer resin, without impacting form fit or function of the intended device. Resist conversion is of interest as the difference in the substituents of the two solvents, impact the effective toxicity of the polymer resists. Specifically, the oral median lethal dose (LD50) in rats for chlorobenzene is 1110 mg/kg, while anisole is 3700 mg/kg. Therefore, developing a process utilizing anisole and replacing chlorobenzene addresses safety concerns and contributes to green initiatives worldwide. Within this work electron beam lithography fabricated transistor components consisting of a double layered source, and gate were converted from a chlorobenzene to anisole based process; while maintaining process of record specifications. The purpose of this work is to provide a starting platform for individuals seeking to convert from a chlorobenzene solvent to an anisole based resist for sub-micron lithography steps.
- Type
- Articles
- Information
- Copyright
- Copyright © Materials Research Society 2019
References
REFERENCES
- 1
- Cited by