Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-01T03:38:14.218Z Has data issue: false hasContentIssue false

Functional Materials through Surfaces and Interfaces

Published online by Cambridge University Press:  26 April 2018

Boyce Chang
Affiliation:
Department of Materials Science and Engineering, Iowa State University, Ames, IA-50010, USA
Andrew Martin
Affiliation:
Department of Materials Science and Engineering, Iowa State University, Ames, IA-50010, USA
Paul Gregory
Affiliation:
Department of Materials Science and Engineering, Iowa State University, Ames, IA-50010, USA
Souvik Kundu
Affiliation:
Department of Materials Science and Engineering, Iowa State University, Ames, IA-50010, USA
Chuanshen Du*
Affiliation:
Department of Materials Science and Engineering, Iowa State University, Ames, IA-50010, USA
Millicent Orondo
Affiliation:
Department of Materials Science and Engineering, Iowa State University, Ames, IA-50010, USA
Martin Thuo*
Affiliation:
Department of Materials Science and Engineering, Iowa State University, Ames, IA-50010, USA
*
Get access

Abstract

In most materials, surfaces and interfaces present a significant portion of the workable area, but this area has often been erroneously perceived as a challenge in processing and thus, largely ignored. Surfaces and interfaces, however, present a network of energetically mismatched (sometimes metastable) molecules that can be exploited to either control surface reactions, engineer bulk stability or reveal new fundamental details of otherwise not well understood processes or systems as described herein. This perspective captures the role of i) structure, ii) chemistry and iii) thermodynamics at the interface in fabricating functional materials. Engineering substrate morphology enables tunable wettability either through the substrate or an adsorbed self-assembled monolayer (SAM), the latter being largely due to effect of sub-nanoscale roughness on conformational defects and overall order in the SAM. Surface roughness and chemistry also dictates the nature and amount of adventitious contaminants on a surface, and this was used to control volume of adsorbed water leading to controlled and tunable step-growth polymerization. The chemical treatment renders the paper amphiphobic, which could be used for self-cleaning surfaces and nucleation of water microdroplets for water harvesting. Finally, creating a self-passivating polished thin (∼0.7-2 nm) shell on a molten metal microdroplet kinetically frustrates solidification leading to significant undercooling. The ambient undercooled liquid metal is used for mechanically-triggered heat-free solder and smart composites. These three cases demonstrate key aspects of surface and interface engineering in integrating well-known concepts for the development of functional materials.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

presented at the 9th Conference of the African Materials Research Society, Gaborone, Botswana

References

Merriam-Webster Dictionary, (Merriam-Webster 2018).Google Scholar
Erbil, H.Y.: Surface chemistry of solid and liquid interfaces, (Wiley Online Library 2006).Google Scholar
Jamtveit, B. and Meakin, P.: Growth, dissolution and pattern formation in geosystems, in Growth, Dissolution and Pattern Formation in Geosystems (Springer 1999), pp. 1.CrossRefGoogle Scholar
Ciracì, C., Hill, R., Mock, J., Urzhumov, Y., Fernández-Domínguez, A., Maier, S., Pendry, J., Chilkoti, A. and Smith, D.. Science 337, 1072 (2012). DOI: 10.1126/science.1224823CrossRefGoogle Scholar
Anker, J.N., Hall, W.P., Lyandres, O., Shah, N.C., Zhao, J. and Van Duyne, R.P.. Nat Mater 7, 442 (2008). DOI: 10.1038/nmat2162CrossRefGoogle Scholar
Maboudian, R. and Carraro, C.. Annu. Rev. Phys. Chem. 55, 35 (2004). DOI: 10.1146/annurev.physchem.55.091602.094445CrossRefGoogle Scholar
Gooding, J.J. and Hibbert, D.B.. TrAC Trends in Analytical Chemistry 18, 525 (1999). DOI: 10.1016/S0165-9936(99)00133-8CrossRefGoogle Scholar
Oyola-Reynoso, S., Heim, A.P., Halbertsma-Black, J., Zhao, C., Tevis, I.D., Çınar, S., Cademartiri, R., Liu, X., Bloch, J.-F. and Thuo, M.M.. Talanta 144, 289 (2015). DOI: 10.1016/j.talanta.2015.06.018CrossRefGoogle Scholar
Wang, Z., Chen, J., Gathiaka, S.M., Oyola-Reynoso, S. and Thuo, M.. Langmuir 32, 10358 (2016). DOI: 10.1021/acs.langmuir.6b01681CrossRefGoogle Scholar
DeHoff, R.: Thermodynamics in materials science, (CRC Press 2006).Google Scholar
Alert, R., Casademunt, J. and Tierno, P.. Physical review letters 113, 198301 (2014). DOI: 10.1103/PhysRevLett.113.198301CrossRefGoogle Scholar
Alert, R., Tierno, P. and Casademunt, J.. Nature communications 7, 13067 (2016). DOI: 10.1038/ncomms13067CrossRefGoogle Scholar
Arkles, B.. Chemtech 7, 766 (1977). DOI: N/AGoogle Scholar
Maoz, R., Sagiv, J., Degenhardt, D., Möhwald, H. and Quint, P.. Supramolecular Science 2, 9 (1995). DOI: 10.1016/0968-5677(96)85635-5CrossRefGoogle Scholar
Naik, V.V., Städler, R. and Spencer, N.D.. Langmuir 30, 14824 (2014). DOI: 10.1021/la503739jCrossRefGoogle Scholar
Steinrück, H.-G., Will, J., Magerl, A. and Ocko, B.. Langmuir 31, 11774 (2015). DOI: 10.1021/acs.langmuir.5b03091CrossRefGoogle Scholar
Oyola-Reynoso, S., Tevis, I., Chen, J., Chang, B., Çinar, S., Bloch, J.-F. and Thuo, M.. Journal of Materials Chemistry A 4, 14729 (2016). DOI: 10.1039/C6TA06446ACrossRefGoogle Scholar
Chen, J., Wang, Z., Oyola-Reynoso, S. and Thuo, M.M.. Langmuir 33, 13451 (2017). DOI: 10.1021/acs.langmuir.7b01937CrossRefGoogle ScholarPubMed
Russell, A.M.: Structure-property relations in nonferrous metals, (Hoboken, NJ : John Wiley, Hoboken, NJ, 2005).CrossRefGoogle Scholar
Sah, C.-T., Noyce, R.N. and Shockley, W.. Proceedings of the IRE 45, 1228 (1957). DOI:CrossRefGoogle Scholar
Çınar, S., Tevis, I.D., Chen, J. and Thuo, M.. Scientific Reports 6, 21864 (2016). DOI: 10.1038/srep21864CrossRefGoogle Scholar
Chen, J., Wang, Z., Oyola-Reynoso, S., Gathiaka, S.M. and Thuo, M.. Langmuir 31, 7047 (2015). DOI: 10.1021/acs.langmuir.5b01662CrossRefGoogle Scholar
Sodhi, R.N., Brodersen, P., Cademartiri, L., Thuo, M.M. and Nijhuis, C.A.. Surface and Interface Analysis 49, 1309 (2017). DOI:CrossRefGoogle Scholar
Farrell, Z.J. and Tabor, C.. Langmuir 34, 234 (2018). DOI: 10.1021/acs.langmuir.7b03384CrossRefGoogle Scholar
Dumke, M., Tombrello, T., Weller, R., Housley, R. and Cirlin, E.. Surface Science 124, 407 (1983). DOI: 10.1016/0039-6028(83)90800-2CrossRefGoogle Scholar
Regan, M., Pershan, P.S., Magnussen, O., Ocko, B., Deutsch, M. and Berman, L.. Physical Review B 55, 15874 (1997). DOI: 10.1103/PhysRevB.55.15874CrossRefGoogle Scholar
Tostmann, H., DiMasi, E., Ocko, B., Deutsch, M. and Pershan, P.S.. Journal of non-crystalline solids 250, 182 (1999). DOI: 10.1016/S0022-3093(99)00226-4CrossRefGoogle Scholar
Newcomb, L.B., Tevis, I., Atkinson, M.B., Gathiaka, S.M., Luna, R.E. and Thuo, M.M.. Langmuir 30, 11985 (2014). DOI: 10.1021/la5032569CrossRefGoogle Scholar
Wang, Z., Chen, J., Oyola-Reynoso, S. and Thuo, M.. Langmuir 32, 8230 (2016). DOI: 10.1021/acs.langmuir.6b02159CrossRefGoogle Scholar
Wang, Z., Chen, J., Oyola-Reynoso, S. and Thuo, M.. Coatings 5, 1034 (2015). DOI: 10.3390/coatings5041034CrossRefGoogle Scholar
Thuo, M.M., Reus, W.F., Nijhuis, C.A., Barber, J.R., Kim, C., Schulz, M.D. and Whitesides, G.M.. Journal of the American Chemical Society 133, 2962 (2011). DOI: 10.1021/ja1090436CrossRefGoogle Scholar
Walba, D.M., Liberko, C.A., Korblova, E., Farrow, M., Furtak, T.E., Chow, B.C., Schwartz, D.K., Freeman, A.S., Douglas, K. and Williams, S.D.. Liquid Crystals 31, 481 (2004). DOI: 10.1080/02678290410001666075CrossRefGoogle Scholar
Kline, R.J., McGehee, M.D. and Toney, M.F.. Nature Materials 5, 222 (2006). DOI: 10.1038/nmat1590CrossRefGoogle Scholar
Jiang, L., Sangeeth, C.S. and Nijhuis, C.A.. Journal of the American Chemical Society 137, 10659 (2015). DOI: 10.1021/jacs.5b05761CrossRefGoogle Scholar
Chen, J., Chang, B., Oyola-Reynoso, S., Wang, Z. and Thuo, M.. ACS Omega 2, 2072 (2017). DOI: 10.1021/acsomega.7b00355CrossRefGoogle Scholar
Yang, Y., Jamison, A.C., Barriet, D., Lee, T.R. and Ruths, M.. Journal of Adhesion Science and Technology 24, 2511 (2010). DOI: 10.1163/016942410X508253CrossRefGoogle Scholar
Ramin, L. and Jabbarzadeh, A.. Langmuir 28, 4102 (2012). DOI: 10.1021/la204701zCrossRefGoogle Scholar
Chen, J., Liu, J., Tevis, I.D., Andino, R.S., Miller, C.M., Ziegler, L.D., Chen, X. and Thuo, M.M.. Physical Chemistry Chemical Physics 19, 6989 (2017). DOI: 10.1039/C6CP07580KCrossRefGoogle Scholar
Nishi, N., Hobara, D., Yamamoto, M. and Kakiuchi, T.. The Journal of chemical physics 118, 1904 (2003). DOI: 10.1063/1.1531098CrossRefGoogle Scholar
Cyganik, P., Szelagowska-Kunstman, K., Terfort, A. and Zharnikov, M.. The Journal of Physical Chemistry C 112, 15466 (2008). DOI: 10.1021/jp805303rCrossRefGoogle Scholar
Heister, K., Rong, H.-T., Buck, M., Zharnikov, M., Grunze, M. and Johansson, L.. The Journal of Physical Chemistry B 105, 6888 (2001). DOI: 10.1021/jp010180eCrossRefGoogle Scholar
Chesneau, F., Schüpbach, B., Szelągowska-Kunstman, K., Ballav, N., Cyganik, P., Terfort, A. and Zharnikov, M.. Physical Chemistry Chemical Physics 12, 12123 (2010). DOI: 10.1039/C0CP00317DCrossRefGoogle Scholar
Zharnikov, M.. Journal of Electron Spectroscopy and Related Phenomena 178, 380 (2010). DOI: 10.1016/j.elspec.2009.05.008CrossRefGoogle Scholar
Ramin, L. and Jabbarzadeh, A.. Langmuir 27, 9748 (2011). DOI: 10.1021/la201467bCrossRefGoogle Scholar
Craig, A.A. and Imrie, C.T.. Macromolecules 28, 3617 (1995). DOI: 10.1021/ma00114a015CrossRefGoogle Scholar
Ramin, L. and Jabbarzadeh, A.. Modelling and Simulation in Materials Science and Engineering 20, 085010 (2012). DOI: 10.1088/0965-0393/20/8/085010CrossRefGoogle Scholar
Marcelis, A.T., Koudijs, A. and Sudhölter, E.J.. Thin Solid Films 284, 308 (1996). DOI: 10.1016/S0040-6090(95)08330-8CrossRefGoogle Scholar
Yamaguchi, A., Watanabe, M. and Yoshizawa, A.. Liquid Crystals 34, 633 (2007). DOI: 10.1080/02678290701292355CrossRefGoogle Scholar
Sporrer, J., Chen, J., Wang, Z. and Thuo, M.M.. The Journal of Physical Chemistry Letters 6, 4952 (2015). DOI: 10.1021/acs.jpclett.5b02300CrossRefGoogle Scholar
Frankiewicz, C. and Attinger, D.. Nanoscale 8, 3982 (2016). DOI: 10.1039/C5NR04098ACrossRefGoogle Scholar
Glavan, A.C., Martinez, R.V., Subramaniam, A.B., Yoon, H.J., Nunes, R.M.D., Lange, H., Thuo, M.M. and Whitesides, G.M.. Adv Funct Mater 24, 60 (2014). DOI: 10.1002/adfm.201300780CrossRefGoogle Scholar
Matisons, J.G.: Silane coupling agents and glass fibre surfaces: a perspective, in Silanes and other coupling agents, edited by Owen, M. J., Dvornic, Petar R. (Springer Netherlands, Advances in Silicon Science, 2009), pp. 281.Google Scholar
Oyola-Reynoso, S., Chen, J., Chang, B.S., Bloch, J.-F. and Thuo, M.M.. RSC Advances 6, 82233 (2016). DOI: 10.1039/C6RA20582HCrossRefGoogle Scholar
Bechtold, T., Manian, A.P., Öztürk, H.B., Paul, U., Široká, B., Široký, J., Soliman, H., Vo, L.T.T. and Vu-Manh, H.. Carbohydrate Polymers 93, 316 (2013). DOI: 10.1016/j.carbpol.2012.01.064CrossRefGoogle Scholar
Pattison, F.L.M. and Dear, R.E.A.. Can. J. Chem. 41, 2600 (1963). DOI: 10.1139/v63-380CrossRefGoogle Scholar
Otieno, J.: Rising chemical use, lax dumping rules leave Africa choking on waste, in Business Daily (businessdailyafrica.com, 2012), p. 4.Google Scholar
Oyola-Reynoso, S., Kihereko, D., Chang, B.S., Mwangi, J.N., Halbertsma-Black, J., Bloch, J.-F., Thuo, M.M. and Nganga, M.M.. Industrial Crops and Products 94, 294 (2016). DOI: 10.1016/j.indcrop.2016.08.051CrossRefGoogle Scholar
Ban, S. and Miyake, R.: Shigeru BAn: paper in architecture, (New York: Rizzoli International Publications, New York, 2009).Google Scholar
Guadarrama-Cetina, J., Mongruel, A., Medici, M.G., Baquero, E., Parker, A.R., Milimouk-Melnytchuk, I., Gonzalez-Vinas, W. and Beysens, D.. European Physical Journal E: Soft Matter and Biological Physics 37, 1 (2014). DOI: 10.1140/epje/i2014-14109-yCrossRefGoogle Scholar
Tevis, I.D., Newcomb, L.B. and Thuo, M.. Langmuir 30, 14308 (2014). DOI: 10.1021/la5035118CrossRefGoogle Scholar
Wang, Y. and Xia, Y.. Nano Letters 4, 2047 (2004). DOI: 10.1021/nl048689jCrossRefGoogle Scholar
Allen, W.P. and Perepezko, J.H.. Metallurgical Transactions A 22, 753 (1991). DOI: 10.1007/BF02670298CrossRefGoogle Scholar
Cademartiri, L., Thuo, M.M., Nijhuis, C.A., Reus, W.F., Tricard, S., Barber, J.R., Sodhi, R.N.S., Brodersen, P., Kim, C., Chiechi, R.C. and Whitesides, G.M.. The Journal of Physical Chemistry C 116, 10848 (2012). DOI: 10.1021/jp212501sCrossRefGoogle Scholar
Cinar, S., Tevis, I.D., Chen, J. and Thuo, M.. Sci. Rep. 6, 21864 (2016). DOI: 10.1038/srep21864CrossRefGoogle Scholar
Perepezko, J.H.. Materials Science and Engineering 65, 125 (1984). DOI: 10.1016/0025-5416(8490206-4)CrossRefGoogle Scholar
Tevis, I.D., Newcomb, L.B. and Thuo, M.. Langmuir 30, 14308 (2014). DOI: 10.1021/la5035118CrossRefGoogle Scholar
Herlach, D.: Containerless Undercooling And Solidification Of Pure Metals, (1991).Google Scholar
Herlach, D.. Metals 4, 196 (2014). DOI: 10.3390/met4020196CrossRefGoogle Scholar
Perepezko, J.H. and Paik, J.S.. MRS Online Proceedings Library 8, null (1981). DOI: 10.1557/PROC-8-49Google Scholar
Perepezko, J.H., Sebright, J.L., Höckel, P.G. and Wilde, G.. Materials Science and Engineering: A 326, 144 (2002). DOI: 10.1016/S0921-5093(0101430-7)CrossRefGoogle Scholar
Kamal, M., El-Bediwi, A.-B., Shalaby, R. and Younus, M.. Journal of Advances in Physics 1404 (2011). DOI: N/AGoogle Scholar
Chang, B.S., Tutika, R., Cutinho, J., Oyola-Reynoso, S., Chen, J., Bartlett, M.D. and Thuo, M.M.. Mater. Horiz., Ahead of Print (2018). DOI: 10.1039/c8mh00032hGoogle Scholar