Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-28T00:02:32.708Z Has data issue: false hasContentIssue false

High Performance Tin-coated Vertically Aligned Carbon Nanofiber Array Anode for Lithium-ion Batteries

Published online by Cambridge University Press:  02 July 2018

Gaind P. Pandey*
Affiliation:
Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125
Kobi Jones
Affiliation:
Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125
Emery Brown
Affiliation:
Department of Chemistry, Kansas State University, Manhattan, KS 66506
Jun Li
Affiliation:
Department of Chemistry, Kansas State University, Manhattan, KS 66506
Lamartine Meda
Affiliation:
Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125
*
Get access

Abstract

This study reports a high-performance tin (Sn)-coated vertically aligned carbon nanofiber array anode for lithium-ion batteries. The array electrodes have been prepared by coaxial sputter-coating of tin (Sn) shells on vertically aligned carbon nanofiber (VACNF) cores. The robust brush-like highly conductive VACNFs effectively connect high-capacity Sn shells for lithium-ion storage. A high specific capacity of 815 mAh g-1 of Sn was obtained at C/20 rate, reaching toward the maximum value of Sn. However, the electrode shows poor cycling performance with conventional LiPF6 based organic electrolyte. The addition of fluoroethylene carbonate (FEC) improve the performance significantly and the Sn-coated VACNFs anode shows stable cycling performance. The Sn-coated VACNF array anodes exhibit outstanding capacity retention in the half-cell tests with electrolyte containing 10 wt.% FEC and could deliver a reversible capacity of 480 mAh g-1 after 50 cycles at C/3 rate.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Winter, M., and Besenhard, J. O., Electrochim. Acta 45, 31, (1999).CrossRefGoogle Scholar
Chan, C. K., Peng, H., Liu, G., McIlwrath, K., Zhang, X. F., Huggins, R. A., and Cui, Y., Nat. Nanotechnol. 3, 31 (2008).CrossRefGoogle Scholar
Zhao, M., Zhao, Q., Qiu, J., Xue, H., and Pang, H., RSC Adv. 6, 95449 (2016).CrossRefGoogle Scholar
Wang, B., Luo, B., Li, X., and Zhi, L., Materials Today 15, 544 (2012).CrossRefGoogle Scholar
Sun, L., Wang, X., Susantyoko, R. A., and Zhang, Q., Carbon 82, 282 (2015).CrossRefGoogle Scholar
Cruden, B. A., Cassell, A. M., Ye, Q., and Meyyappan, M., J. Appl. Phys. 94, 4070 (2003).CrossRefGoogle Scholar
Melechko, A. V., Merkulov, V. I., McKnight, T. E., Guillorn, M., Klein, K. L., Lowndes, D. H., and Simpson, M. L., J. Appl. Phys. 97, 041301 (2005).CrossRefGoogle Scholar
Klankowski, S. A., Pandey, G. P., Cruden, B. A., Liu, J., Wu, J., Rojeski, R. A., and Li, Jun, J. Power Sources 276, 73 (2015).CrossRefGoogle Scholar
Pandey, G. P., Klankowski, S. A., Li, Y., Sun, X. S., Wu, J., Rojeski, R. A., and Li, J., ACS Appl. Mater. Interfaces 7, 20909 (2015).CrossRefGoogle Scholar
Wang, D., Li, X., Yang, J., Wang, J., Geng, D., Li, R., Cai, M., Sham, T.-K., and Sun, X., Phys. Chem. Chem. Phys. 15, 3535 (2013).CrossRefGoogle Scholar
Yang, Z., Gewirth, A. A., and Trahey, L., Appl. Mater. Interfaces 7, 5667 (2015).Google ScholarPubMed
Hong, S., Choo, M.-H., Kwon, T. H., Kim, J. Y. and Song, S.-W., Adv. Mater. Interfaces 3, 1600172 (2016).CrossRefGoogle Scholar
Seo, D. M., Nguyen, C. C., Young, B. T., Heskett, D. R., Woicik, J. C. and Lucht, B. L., J. Electrochem. Soc. 162, A7091 (2015).CrossRefGoogle Scholar
Tian, R., Zhang, Y., Chen, Z., Duan, H., Xu, B., Guo, Y., Kang, H., Li, H. and Liu, H., Sci. Rep. 6, 19195 (2016).CrossRefGoogle Scholar
Dong, Y., Das, S., Zhu, L., Ben, T. and Qiu, S., J. Mater. Chem. A 4, 18822 (2016).CrossRefGoogle Scholar
Nam, D.-H., Kim, J. W., Lee, J.-H., Lee, S.-Y., Shin, H.-A-S., Lee, S.-H., and Joo, Y.-C., J. Mater. Chem. A 3, 11021 (2015).CrossRefGoogle Scholar