Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-13T23:35:18.492Z Has data issue: false hasContentIssue false

Influence of rare-earth substitution on the structural, magnetic, optical and dielectric properties of ZnO nanoparticles

Published online by Cambridge University Press:  05 February 2019

Ricardo Martínez*
Affiliation:
Department of Physics, University of Puerto Rico, Rio Piedras, San Juan, PR, 00931, USA
Claudia Zuluaga
Affiliation:
Department of Physics, University of Puerto Rico, Rio Piedras, San Juan, PR, 00931, USA
Sandra Dussan
Affiliation:
Department of Physical Sciences, University of Puerto Rico, Río Piedras, San Juan, PR, 00931-3323USA
Hannu Huhtinen
Affiliation:
Wihuri Physical Laboratory, Department of Physics and Astronomy, University of Turku, Turku FIN-20014, Finland
Wojciech Jadwisienczak
Affiliation:
School of Electrical Engineering and Computer Science, Ohio University, Stocker Center, Athens, 45701, USA
Ratnakar Palai
Affiliation:
Department of Physics, University of Puerto Rico, Rio Piedras, San Juan, PR, 00931, USA
Get access

Abstract

We report on structural, magnetic, optical, and dielectric properties of rare earth (Er and Yb)-doped ZnO nanoparticles with Na-co-doping for charge compensation by sol-gel process. The effect of doping concentration on the structural and dielectric properties of ZnO has been studied under magnetic field and UV excitation. The magnetodielectric and photodielectric effects at room temperature of doped ZnO are discussed in the light of magnetic and optical properties of Er3+ and Yb3+ ions.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Jayah, N.A, Yahaya, H., Mahmood, M. R., Terasako, T., Yasui, K. and Manaf Hashim, A., Nanoscale Res Lett., 10:7 (2015).CrossRefGoogle Scholar
Yamamoto, T., Shiosaki, T., and Kawabata, A., J. Appl. Phys. 51 31133120 (1980).CrossRefGoogle Scholar
Look, D.C., Mater. Sci. Eng. B, 80 383387 (2001).CrossRefGoogle Scholar
Wang, X., Summers, C.J. and Wang, Z.L., Nano Lett. 43 423426 (2004).CrossRefGoogle Scholar
Langton, N. H. and Matthews, D.. J. Appl. Phys. 9, 453456 (1958).Google Scholar
Divya, N. K., Aparna, P. U., Pradyumnan, P. P., Advances in Materials Physics and Chemistry, 5, 287-294, (2015).CrossRefGoogle Scholar
Jayachandraiah, C., Krishnaiah, G. Adv. Mater. Lett. 6 (8), 743-748 (2015).CrossRefGoogle Scholar
Dasari, K, Wu, J, Huhtinen, H, Jadwisienczak, WM and Palai, R, J. Phys. D: Appl. Phys, 50, 175104 (2017).CrossRefGoogle Scholar
Dasari, K., Wang, J., Guinel, M. J.-F., Jadwisienczak, W. M., Huhtinen, H., Mundle, R., Pradhan, A. K., and Palai, R., J. Appl.Phys., 118, 125707 (2015).CrossRefGoogle Scholar
Ohtake, T., Hijii, S., Sonoyama, N., Sakata, T.. Appl. Surf. Scie., 253, 1753, (2006).CrossRefGoogle Scholar
Benelli, C. and Gatteschi, D., Chem. Rev. 102, 6, 2369-2388 (2002).CrossRefGoogle Scholar
Jia, Y.Q., J. Solid State Chem, 95, 1, 184-187 (1991).CrossRefGoogle Scholar
Norton, D.P., Heo, Y.W., Ivill, M.P., Ip, K., Pearton, S.J. and Chisholm, M.F., Materials Today, 7, 6, 34-40 (2004).CrossRefGoogle Scholar
Pearton, S. J., Norton, D. P., Ip, K., Heo, Y. W. and Steiner, T., Prog. Mater. Sci, 50, 3, 293-340 (2005).CrossRefGoogle Scholar
Ungureanu, M., Schmidt, H., Xu, Q., Wenckstern, H., Spemann, D., Hochmuth, H., Lorenz, M. and Grundmann, M., Superlattices and Microstructures, 42, 1–6, 231-235 (2007).CrossRefGoogle Scholar
Koao, L. F., Dejene, F. B., Kroon, R. E. and Swart, H. C., J. Lumin. 147, 8589 (2014).CrossRefGoogle Scholar
Koao, L.F., Dejene, F. B., , F. B, Swart, H. C. and Botha, J. R.. J. Lumin. 143, 463468, (2013).CrossRefGoogle Scholar
Von Wenckstern, H., Schmidt, H., Brandt, M., Lajna, A., Pickenhain, R., Lorenz, M., Grundmann, M., Hofmann, D. M., Polity, A., Meyer, B. K., Saal, H., Binnewies, M., Borger, A., Becker, K. D., Tikhomirov, V. A., and Jug, K., Prog. Solid State Chem. 37, 153 (2009).CrossRefGoogle Scholar
Zhao, Z., Lei, W., Zhang, X., Wang, B., and Jiang, H., Sens. 10, 1216 (2010).CrossRefGoogle Scholar
Rout Sekhar, C., Raju, A. R., Govindaraj, A., and Rao, C. N. R.. Solid State Commun. 138 , 136 (2006).CrossRefGoogle Scholar
Han, J., Fan, F., Xu, C., Lin, S., Wei, M., Duan, X., and Wang, Z. L., Nanotechnol. 21, 405203 (2010).CrossRefGoogle Scholar
Suchea, M., Kornilios, N., and Koudoumas, E., Physica B, 405, 4389 (2010).CrossRefGoogle Scholar
Halder, N. C. and Wagner, C. N. J., Acta Crystallogr. 20, 312313 (1966).CrossRefGoogle Scholar
Halder, N. C. and Wagner, C. N. J., Adv. X-Ray Anal. 9, 91102 (1966).Google Scholar
Gao, D., Zhang, Z., Fu, J., Xu, Y., Qi, Jing, and Xue, D., J. Appl. Phys. 105, 113928 (2009).CrossRefGoogle Scholar
Hong, N. H., Sakai, J., and Gervais, F., J. Magn. Magn. Mater. 316, 214 (2007).CrossRefGoogle Scholar
Catalan, G., Appl. Phys. Lett. 88, 102902 (2006).CrossRefGoogle Scholar
Lawes, G., Kimura, T., Varma, C. M., Subramanian, M. A., Rogado, N., Cava, R. J., and Ramirez, A. P., Prog. Solid. State Ch. 37, 40 (2009).CrossRefGoogle Scholar
Daksh, D. and Kumar, Y., Reviews in Nanoscience and Nanotechnology, 5, 127, (2016).CrossRefGoogle Scholar