Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-01T08:56:08.352Z Has data issue: false hasContentIssue false

Ionic-Liquid-Based Polyurethane Dispersions for Stabilizing Graphene in Water

Published online by Cambridge University Press:  19 August 2019

Harshit Gupta
Affiliation:
Coatings Research Institute, School of Engineering, Eastern Michigan University, Ypsilanti, MI 48197, USA
John Texter*
Affiliation:
Coatings Research Institute, School of Engineering, Eastern Michigan University, Ypsilanti, MI 48197, USA
*
Get access

Abstract

Aqueous auto-dispersing polyurethane dispersions (PUDs) have recently been reported to form nanoparticulate dispersions at up to 25% by weight. Their incorporation of an ionic-liquid (IL) monomer, 1-hydroxyundecyl-3-methyl imidazolium bromide (HOC11C1ImBr) as a chain-terminating group appears to account for their auto-dispersing ability, and these PUD nanoparticles bear similarity to IL-based nanolatexes that have provided thermodynamically stable aqueous dispersions of nanocarbons. We demonstrate that these HOC11C1ImBr-based PUDs stabilize aqueous graphene dispersions at 1% by weight graphene in ultrasonicated top-down liquid phase exfoliation. Their formation quantitatively follows an analytical model of exfoliation kinetics of layered materials and a stretched exponential kinetic model. Such dispersions are ideally formulated for making nanocomposites composed of similar or compatible PUDs and other condensation polymers.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

§

Present Address: Axalta Coating Systems, Global Innovation Center, 1050 Constitution Avenue, Philadelphia, PA 19112, USA

References

REFERENCES

Ulrey, B. D., Nair, L. S., and Laurencin, C. T., J. Poly. Sci. A Poly. Phys. 49, 832-864 (2011).CrossRefGoogle Scholar
Engels, H. W., Pirkl, H. G., Albers, R., Albach, R. W., Krause, J, Hoffmann, A., Casselmann, H., and Dormish, J., Angew. Chem. Int. Ed. 52, 94229441 (2013).CrossRefGoogle Scholar
Kim, B. K., Colloid Polymer Sci. 274, 599-611 (1996).CrossRefGoogle Scholar
Athawale, V. D. and Kulkarni, M. A., Prog. Org. Coat. 67, 4454 (2010).CrossRefGoogle Scholar
Welton, T., Chem. Rev. 99, 2071-2084 (1999).CrossRefGoogle Scholar
Lu, J.M., Yan, F., and Texter, J., Prog. Poly. Sci. 34, 431-448 (2009).CrossRefGoogle Scholar
Yuan, J. Y., Mecerreyes, D., and Antonietti, M., Prog. Polym. Sci. 38, 10091036 (2013).CrossRefGoogle Scholar
Qian, W. J., Texter, J., and Yan, F., Chem. Soc. Rev. 46, 11241159 (2017).CrossRefGoogle Scholar
Texter, J., Kuriakose, N., Shendre, S., Lewis, K., Venkatraman, S., and Gupta, H., Chem. Commun. 54, 503-506 (2018).CrossRefGoogle Scholar
Gupta, H. and Texter, J., Proc. American Coatings Conference, Paper ID p.15 (9 pp), Indianapolis, IN (2018).Google Scholar
Gupta, H. and Texter, J., Israel J. Chem. 58, 1338-1346 (2018).CrossRefGoogle Scholar
Ghosh, A., Rao, K.V., Voggu, R., George, S. J., Chem. Phys. Lett. 488, 198-201 (2010).CrossRefGoogle Scholar
Antonietti, M., Shen, Y., Nakanishi, T., Manuelian, M., Campbell, R., Gwee, L., Elabd, Y., Tambe, N., Crombez, R., and Texter, J., ACS Appl. Mater. Interfaces 2, 649-653 (2010).CrossRefGoogle Scholar
Rastogi, R., Kaushal, R., Triathi, S. K., Sharma, A. L., Kaur, L., and Bharadwaj, L. M., J. Colloid Interface Sci. 328, 421-428 (2008).CrossRefGoogle Scholar
Wang, H., Curr. Opin. Colloid Interface Sci. 14, 364-371 (2009).CrossRefGoogle Scholar
Texter, J., Crombez, R., Maniglia, R., MaX, M. X, M., Arjunan Vasantha, V., Manuelian, M., Campbell, R., Slater, L., and Mourey, T., J. Surfactants Deterg. 22, xxx-xxx (2019), in press; doi: 10.1002/jsde.12303.Google Scholar
Ghosh, A., Rao, K. V., George, S. J., and Rao, C. N. R., Chem. Eur. J. 16, 2700-2704 (2010).CrossRefGoogle Scholar
Texter, J., Curr. Opin. Colloid Interface Sci. 19, 163-174 (2014).CrossRefGoogle Scholar
Texter, J., in Handbook of Graphene Science, edited by Aliofkhazre, M., Ali, N., Milne, W. I., Ozkhan, C. S., Mitura, S., and Gervasoni, J., Vol. 3, CRC Press, Boca Raton (2016) 315-341.Google Scholar
Subrahmanyam, K. S., Ghosh, A., Gomathi, A., Govindaraj, A., and Rao, C. N R., Nanosci. Nanotech. Lett. 1, 28-31 (2009).CrossRefGoogle Scholar
Texter, J., Ager, D., Arjunan Vasantha, V., Crombez, R., England, D., Ma, X., Maniglia, R., and Tambe, N., Chem. Lett. 41, 1377-1379 (2012).CrossRefGoogle Scholar
Ager, D., Arjunan Vasantha, V., Crombez, R., and Texter, J., ACS Nano 8, 11191-11205 (2014).CrossRefGoogle Scholar
Texter, J., Angew. Chem. Int. Ed. 54, 10258-10262 (2015); Angew. Chem. 127, 10396-10400 (2015).CrossRefGoogle Scholar
Kolmogorov, A., Akad. Nauk SSSR, Izv., Ser. Matem. 1, 355-362 (1937).Google Scholar
Johnson, W., Mehl, R., Trans. AIME 135, 416-442 (1939).Google Scholar
Avrami, M., J. Chem. Phys. 7, 1103-1112 (1939).CrossRefGoogle Scholar
Shlesinger, M. F. and Montroll, E. W., Proc. Natl. Acad. Sci. 81, 1280-1283 (1984).CrossRefGoogle Scholar
Shlesinger, M. F., J. Stat. Phys. 36, 639-648 (1984).CrossRefGoogle Scholar
Yousefi, R. and Cheraghizade, M., in Applications of Nanomaterials, Bhagyaraj, S. M., Oluwafemi, O. S., Kalarikkel, N., and Thomas, S., Editors, Elsevier, pp. 23-43 (2018)CrossRefGoogle Scholar
Sun, Z. M., Lin, L., Yuan, M. W., Li, H. F., SunG, B G, B, Nan, C. Y., Ma, S. L., and Yang, X. J., Electrochim. Acta 281, 420-428 (2018).CrossRefGoogle Scholar
Gupta, H., MS Thesis, Eastern Michigan University (2019), https://commons.emich.edu/theses/964; accessed 13 June 2019.Google Scholar
Supplementary material: PDF

Gupta and Texter supplementary material

Gupta and Texter supplementary material 1

Download Gupta and Texter supplementary material(PDF)
PDF 787 KB