Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-10T15:54:30.787Z Has data issue: false hasContentIssue false

Plant Growth Response to Atmospheric Air Plasma Treatments of Seeds of 5 Plant Species

Published online by Cambridge University Press:  19 January 2016

Masaharu Shiratani*
Affiliation:
Graduate School of Information Science and Electrical Engineering, Kyushu University 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
Thapanut Sarinont
Affiliation:
Graduate School of Information Science and Electrical Engineering, Kyushu University 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
Takaaki Amano
Affiliation:
Graduate School of Information Science and Electrical Engineering, Kyushu University 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
Nobuya Hayashi
Affiliation:
Interdisciplinary Graduate School of Engineering Science, Kyushu University 6-1 Kasuga-kouen, Fukuoka, 816-8580, Japan
Kazunori Koga
Affiliation:
Graduate School of Information Science and Electrical Engineering, Kyushu University 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
Get access

Abstract

We have investigated plant growth response to atmospheric air plasma treatments of seeds on their growth for 5 plant speces; Radish sprout (Raphanus sativus L.), rice (Oryza Sativa), Zinnia, Arabidopsis L. Thaliana and Plumeri. The average length of Radish sprout, rice, Arabidopsis Thaliana, Plumeria and Zinnia, are 250%, 80%, 60%, 30% and 20% longer than those without plasma treatments, respectively. We have obtained correlation between the growth enhancement and O3 and NOx concentration. The optimum radical dose for the growth enhancement depends on plant species.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

The environmental food crisis, UNEP, ISBN: 978-82-7701-054-0.Google Scholar
Fridman, A., Chirokov, A. and Gutsol, A., Jpn. J. Appl. Phys., 38, R1 (2005).Google Scholar
Chirokov, A., Gutsol, A. and Fridman, A., Pure Appl. Chem., 77, 487 (2005).Google Scholar
Fridman, G., Friedman, G., Gutsol, A., Shekhter, A. B., Vasilets, V. N., and Fridman, A., Plasma Process. Polym., 5, 503 (2008).CrossRefGoogle Scholar
Kuzuya, M., Yakugaku Zasshi, 126, 439 (2006).Google Scholar
Ito, M., Ohta, T. and Hori, M., J. Korean Phys. Soc., 60, 6 (2012).CrossRefGoogle Scholar
Kitazaki, S. and Hayashi, N., IEEE Trans. Plasma Sci., 36, 1304 (2008).Google Scholar
Kitazaki, S., Yamashita, D., Matsuzaki, H., Uchida, G., Koga, K., and Shiratani, M., Proc. IEEE TENCON 1960 (2010).Google Scholar
Hayashi, N., Nakahigashi, A., Goto, M., Kitazaki, S., Koga, K., and Shiratani, M., Jpn. J. Appl. Phys. 50, 08JF04 (2011).CrossRefGoogle Scholar
Kitazaki, S., Koga, K., Shiratani, M., and Hayashi, N., Jpn. J. Appl. Phys., 51, 01AE01 (2012).CrossRefGoogle Scholar
Kitazaki, S., Koga, K., Shiratani, M., and Hayashi, N., MRS Proceedings 1469, mrss12-1469-ww0208 (2012).Google Scholar
Kitazaki, S., Sarinont, T., Koga, K., Shiratani, M., and Hayashi, N., Curr. Appl. Phys., 14, 149 (2014).Google Scholar
Sarinont, T., Koga, K., Kitazaki, S., Uchida, G., Hayashi, N., and Shiratani, M., JPS Conf. Proc., 1, 015078 (2014).Google Scholar
Koga, K., Thapanut, S., Amano, T., Seo, H., Itagaki, N., Hayashi, N. and Shiratani, M., Appl. Phys. Express. 9, 016201 (2016).CrossRefGoogle Scholar
Violleau, F., Hadjeba, K., Albet, J., Cazalis, R. and Surel, O., Proc. IOA Conference and Exhibition, 3.4 (2007).Google Scholar
Zhang, W., Wang, G., Liu, X., Feng, Z., Plant Sci. 226, 172 (2014).CrossRefGoogle Scholar
Beligni, M. V. and Lamattina, L., Planta 210, 215 (2000).Google Scholar
Kopyra, M. and Gwozdz, E.A., Plant Physiol. Biochem., 41, 1011 (2003).CrossRefGoogle Scholar