Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-01T00:40:21.722Z Has data issue: false hasContentIssue false

Preparation of High-quality Graphene via Electrochemical Exfoliation in Acidic Electrolytes: A Review

Published online by Cambridge University Press:  19 January 2017

Youning Gong
Affiliation:
School of Physics and Technology, Wuhan University, Wuhan 430072, China
Chunxu Pan*
Affiliation:
School of Physics and Technology, Wuhan University, Wuhan 430072, China
*
*(Email: cxpan@whu.edu.cn)
Get access

Abstract

Since the discovery of graphene in 2004, graphene has already been one of the researching hotspots in the material science. As a promising method, electrochemical exfoliation has drawn great attention for producing graphene on industrial scale with high efficiency, low cost, and non-pollution. However, like other wet-chemical methods, the induced oxidation and chemical functionalization are unavoidable during the exfoliation process. Several solutions have been reported to overcome this issue and improve the graphene quality. In this review, we summarize the recent progress in preparation and potential applications of high-quality graphene via electrochemical exfoliation in acidic electrolytes, focusing on the technological innovation and related properties of obtained high-quality graphene.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Cai, M.Z., Thorpe, D., Adamson, D.H. and Schniepp, H.C., J. Mater. Chem. 22, 24992 (2012).CrossRefGoogle Scholar
Lu, J., Yang, J.X., Wang, J.Z., Lim, A., Wang, S. and Loh, K.P., ACS Nano 3, 2367 (2009).CrossRefGoogle Scholar
Munuera, J.M., Paredes, J.I., Villar-Rodil, S., Ayán-Varela, M., Pagán, A., Aznar-Cervante, S.D., Cenis, J.L., Martínez-Alonso, A. and Tascón, J.M.D., Carbon 94, 729 (2015).CrossRefGoogle Scholar
Abdelkader, A.M., Cooper, A, J., Dryfe, R.A.W. and Kinloch, I.A., Nanoscale 7, 6944 (2015).CrossRefGoogle Scholar
Kumar, M.K.P. and Srivastava, C., JOM 1, 374 (2016).CrossRefGoogle Scholar
Gong, Y.N., Ping, Y.J., Li, D.L., Luo, C.Z., Ruan, X.F., Fu, Q. and Pan, C.X., Appl. Surf. Sci. 397, 312 (2017).Google Scholar
Su, C.Y., Lu, A.Y., Xu, Y., Chen, F.R., Khlobystov, A.N. and Li, L.J., ACS Nano 5, 2332 (2011).CrossRefGoogle Scholar
Parvez, K., Li, R., Puniredd, S.R., Hernandez, Y., Hinkel, F., Wang, S., Feng, X.L. and Müllen, K., ACS nano 7, 3598 (2013).CrossRefGoogle Scholar
Parvez, K., Wu, Z.S., Li, R., Liu, X., Graf, R., Feng, X.L. and Müllen, K., J. Am. Chem. Soc. 136, 6083 (2014).CrossRefGoogle Scholar
Rao, K.S., Sentilnathan, J., Cho, H.W., Wu, J.J. and Yoshimura, M., Adv. Funct. Mater. 25, 298 (2015).CrossRefGoogle Scholar
Yang, S., Brüller, S., Wu, Z.S., Liu, Z., Parvez, K., Dong, R., Richard, F., Samorì, P., Feng, X.L. and Müllen, K., J. Am. Chem. Soc. 137, 13927 (2015).CrossRefGoogle Scholar
Chen, C.H., Yang, S.W., Chuang, M.C., Woon, W.Y. and Su, C.Y., Nanoscale, 7, 15362 (2015).CrossRefGoogle ScholarPubMed
Park, S., An, J., Potts, J.R., Velamakanni, A., Murali, S. and Ruoff, R.S., Carbon 49 3019 (2011).CrossRefGoogle Scholar
Dubin, S., Gilje, S., Wang, K., Tung, V.C., Cha, K., Hall, A.S., Farrar, J., Varshneya, R., Yang, Y. and Kaner, R.B., ACS nano 4, 3845 (2010).CrossRefGoogle Scholar
Luo, D.C., Zhang, G.X., Liu, J.F. and Sun, X.M., J.Phys. Chem. C 115, 11327 (2011).CrossRefGoogle Scholar
McAllister, M.J., Li, J.L., Adamson, D.H., Schniepp, H.C., Abdala, A.A., Liu, J., Herrera-Alonso, M., Milius, D.L., Car, R., Prud’homme, R.K. and Aksay, I.A., Chem. Mater. 19, 4396 (2007).CrossRefGoogle Scholar
Zhang, Y.P., Li, D.L., Tan, X.J., Zhang, B., Ruan, X.F., Liu, H.J., Pan, C.X., Liao, L., Zhai, T.Y., Bando, Y., Chen, S.S., Cai, W.W. and Ruoff, R.S., Carbon 54, 143 (2013).CrossRefGoogle Scholar
Nieto, A., Lahiri, D. and Agarwal, A., Carbon 50, 4068 (2012).CrossRefGoogle Scholar
Huang, Y., Liang, J.J. and Chen, Y.S., Small 8, 1805 (2012).CrossRefGoogle Scholar
Wu, L.Q., Li, W.W., Li, P., Liao, S.T., Qiu, S.Q., Chen, M.L., Guo, Y.F., Li, Q., Zhu, C. and Liu, L.W., Small 10, 1421 (2014).CrossRefGoogle ScholarPubMed
See, S.H., Seo, S.D., Jin, Y.H., Shim, H.W. and Kim, D.W., Electrochem. Commun. 12, 1419 (2010).Google Scholar
Zhang, W., Zeng, Y., Xiao, N., Hng, H.H. and Yan, Q., J. Mater. Chem. 22 8455 (2012).CrossRefGoogle Scholar
Yang, C.Y., Wu, C.L., Lin, Y.H., Tsai, L.H., Chi, Y.C., Chang, J.H., Wu, C.I., Tsai, H.K., Tsai, D.P. and Lin, G.R., Opt. Mater. Express 3,1893 (2013).CrossRefGoogle Scholar