Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T12:04:09.334Z Has data issue: false hasContentIssue false

Silver nanoparticles produced by laser ablation for a study on the effect of SERS with low laser power on N719 dye and Rhodamine-B

Published online by Cambridge University Press:  11 March 2019

Nelson Fabian Villegas Borrero*
Affiliation:
State University of Campinas, IFGW, Campinas, SP, 13083-859, Brazil.
José Maria Clemente da Silva Filho
Affiliation:
State University of Campinas, IFGW, Campinas, SP, 13083-859, Brazil.
Viktor A. Ermakov
Affiliation:
State University of Campinas, IFGW, Campinas, SP, 13083-859, Brazil.
Francisco Chagas Marques
Affiliation:
State University of Campinas, IFGW, Campinas, SP, 13083-859, Brazil.
Get access

Abstract

The effect of surface-enhanced Raman spectroscopy (SERS) was investigated in N719 dye thin films deposited on silicon wafer with a thin film of silver nanoparticles (Ag-NPs) fabricated by laser ablation in an aqueous solution, using a NdYAG laser (λ = 1064nm). Optical absorption spectroscopy of the Ag-NPs colloidal solution shows an absorption peak at λ = 400nm, associated with a localized surface plasmon resonance in the Ag-NPs. Scanning electron microscopy (SEM) reveals that these NPs have an approximately spherical shape, with their diameter being tunable by laser power intensity. Raman spectroscopy measurements were performed using low laser power to avoid damage to the N719 dye films. Thus, a small Raman signal is obtained. The Raman intensity was greatly increased when the N719 film was deposited on a substrate with a thin film of Ag-NPs due to the SERS effect. The process was also used in Rhodamine-B to clearly demonstrate the SERS effect obtained by the use of these NPs produced by laser ablation.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Garcia, M.A., J. Phys. D. Appl. Phys. 45 (38), 389501 (2012).CrossRefGoogle Scholar
Schmid, Gunter and others, Nanoparticles: From theory to application, (Publisher Wiley VCH, 2005)Google Scholar
Phillip, C., Ingram, D.B. and Linic, S., J. Phys. Chem. C 114 (19), 91739177 (2010).Google Scholar
Takagi, D., Hibino, H., Suzuki, Satoru, Kobayashi, Yoshihiro and Homma, Yoshikazu. Nano Lett. 7 (8), 2272-2275 (2007).CrossRefGoogle Scholar
Brown, Michael D., Suteewong, Teeraporn, Sai Santosh Kumar, R., D’Innocenzo, Valerio, Petrozza, Annamaria, Lee, Michael M., Wiesner, Ulrich and Snaith, Henry J., Nano Lett. 11 (2), 438-445 (2011).Google Scholar
Chen, F.C., Chu, C.W., He, J., Yanga, Y. and Lin, J.L. Appl. Phys. lett. 85 (15), 3295-3297 (2004).CrossRefGoogle Scholar
Kelly, K.L., Coronado, E., Zhao, L.L. and Schatz, G.C., J. Phys. Chem. B 107 (3), 668677 (2003).CrossRefGoogle Scholar
Xu, Z.,Hou, Y. and Sun, S., J. Am. Chem. Soc. 129 (28), 8698-8699 (2007).CrossRefGoogle Scholar
Shakeel, A. and Ikram, S., J. Photochemistry and Photobiology B: Biology 161, 141-153 (2016).Google Scholar
Oleg, V. Salata, J. Nanobiotechnology 2 (1), 3 (2004).Google Scholar
Fritzsche, W. and Taton, T.A., Nanotechnology 14 (12), 63-73 (2003).CrossRefGoogle Scholar
Ermakov, V.A., da Silva Filho, J.M.C., Bonato, L.G., Vardhan Mogili, N.V., Montoro, F.E., Iikawa, F., Nogueira, A.F., Cesar, C.L., Jimenez-Villar, E. and Marques, F.C., ACS Omega 3 (2), 2027-2032 (2018).CrossRefGoogle Scholar
Simakin, A.V., Voronov, V.V., Kirichenko, N.A. and Shafeev, G.A., Appl. Phys. A, 79 (4-6), 1127-1132 (2004).CrossRefGoogle Scholar
Haiss, W., Thanh, N.T., Aveyard, J. and Fernig, D.G., Analytical Chemistry 79 (11), 4215-4221 (2007).CrossRefGoogle Scholar
Wu, Jyh-Lih, Chen, Fang-Chung, Hsiao, Yu-Sheng, Chien, Fan-Ching, Chen, Peilin, Kuo, Chun-Hong, Huang, Michael H., and Hsu, Chain-Shu, ACS Nano 5 (2), 959-967 (2011).CrossRefGoogle Scholar
Green, M.A. and Pillai, S., Nat. Photonics 6 (3), 130-132 (2012).CrossRefGoogle Scholar
da Silva Filho, J. M. and Marques, F.C., MRS Advances 3 (32), 1843-1848 (2018).CrossRefGoogle Scholar
Atwater, H.A. and Polman, A., Nature materials 9 (3), 205 (2010).CrossRefGoogle Scholar
Duche, D., Torchio, P., Escoubas, L., Monestier, F., Simon, J.J., Flory, F. and Mathian, G., Sol. Energy Mater. Sol. Cells 93 (8), 1377-1382 (2009).CrossRefGoogle Scholar
Jimenez-Villar, E., Xavier, M. C. S., Wetter, N.U., Mestre, C., Martins, W.S., Basso, G.F., Ermakov, V.A., Marques, F.C., and de Sá, G.F., Photonics Research 6(10), 929-942 (2018).CrossRefGoogle Scholar
Durr, N.J., Larson, T., Smith, D.K., Korgel, B.A., Sokolov, K. and Ben-Yakar, A., Nano Lett. 7 (4), 941945 (2007).CrossRefGoogle Scholar
Fuertes, G., Sánchez-Muñoz, O.L., Pedrueza, E., Abderrafi, K., Salgado, J., Jiménez, E., Langmuir 27 (6), 2826-2833 (2011).CrossRefGoogle Scholar
Yan, Y., Warren, S.C., Fuller, P., Grzybowski, B.A., Nat. Nanotechnol 11 (7), 603-608 (2016).CrossRefGoogle Scholar
Lal, S., Link, S., Halas, N.J., Nat. Photonics 1 (11), 641-648 (2007).CrossRefGoogle Scholar
Hutter, E. and Fendler, J.H., Adv. Mater 16 (19), 1685-1706 (2004).CrossRefGoogle Scholar
Schaadt, D.M., Feng, B., and Yu, E.T.. Appl. Phys. Lett. 86 (6), 063106 (2005).CrossRefGoogle Scholar
Willets, K.A., Van Duyne, R.P., Annu. Rev. Phys. Chem. 58, 267297 (2007).CrossRefGoogle Scholar
Ermakov, V.A., Jimenez-Villar, E., da Silva Filho, J.M.C., Yassitepe, E., Vardhan Mogili, N.V., Iikawa, F., de Sá, G.F., Cesar, C.L. and Marques, F.C., Langmuir 33, 22572262 (2017).CrossRefGoogle Scholar
Derkacs, D., Lim, S.H., Matheu, P., Mara, W., Yub, E.T., Appl. Phys. Lett. 89 (9), 093103 (2006).CrossRefGoogle Scholar
Wang, H., Brandl, D.W., Nordlander, P., and Halas, N.J., Acc. of chem. Res., 40(1), 53-62 (2007).CrossRefGoogle Scholar
Jain, P.K., Huang, X., El-Sayed, I.H., El-Sayed, M.H., Acc. Chem. Res. 41, 1578–86 (2008).CrossRefGoogle Scholar
Myroshnychenko, V., Rodriguez-Fernandez, J., Pastoriza-Santos, I., Funston, A.M., Novo, C., Mulvaney, P., et al. , Chem. Soc. Rev. 37, 1792–805 (2008).CrossRefGoogle Scholar
Garcia, M.A., J. Phys. D Appl. Phys. 44, 283001–020 (2011).CrossRefGoogle Scholar
Wiley, B., Sun, Y., Mayers, B. and Xia, Y., Chem. A-Eur. J. 11 (2), 454-463 (2005).CrossRefGoogle Scholar
Ma, H., Yin, B., Wang, S., Jiao, Y., Pan, W., Huang, S., Chen, S., Meng, F., Chem. Phys. Chem. 5 (1), 6875 (2004).CrossRefGoogle Scholar
Kruis, F.E., Fissan, H., Rellinghaus, B., Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 69, 329334 (2000).CrossRefGoogle Scholar
Mafuné, F., Kohno, J., Takeda, Y., Kondow, T., Sawabe, H., J. Phys. Chem. B 105 (22), 5114-5120 (2001).CrossRefGoogle Scholar
Evanoff, D.D., Chumanov, G.J., Phys. Chem. B 108 (37), 13957-13962 (2004).CrossRefGoogle Scholar
Merga, G., Wilson, R., Lynn, G., Milosavljevic, B.H., Meisel, D.J., Phys. Chem. C, 111 (33), 12220-12226 (2007).CrossRefGoogle Scholar
Yang, G.W., Prog. Mater. Sci. 52 (4), 648698 (2007).CrossRefGoogle Scholar
Semaltianos, N.G., Logothetidis, S., Frangis, N., Tsiaoussis, I., Perrie, W., Dearden, G., Watkins, K.G., Chem. Phys. Lett. 496 (1–3), 113116 (2010).CrossRefGoogle Scholar
Kabashin, A.V., Meunier, M.J., Appl. Phys. 94 (12), 79417943 (2003).CrossRefGoogle Scholar
Sylvestre, J.P., Kabashin, A.V., Sacher, E., Meunier, M., Luong, J.H., J. Am. Chem. Soc. 126 (23), 7176-7177 (2004).CrossRefGoogle Scholar
Simakin, A.V., Voronov, V.V., Kirichenko, N.A., Shafeev, G.A., Appl. Phys. A Mater. Sci. Process 79 (4–6), 1127-1132 (2004).CrossRefGoogle Scholar
Momma, C., Chichkov, B.N., Nolte, S., von Alvensleben, F., Tünnermann, A., Welling, H., Wellegehausen, B., Opt. Commun. 129 (1–2), 134-142 (1996).CrossRefGoogle Scholar
Verma, A., Stellacci, F., Small 6 (1), 1221 (2010).CrossRefGoogle Scholar
Fleischmann, M., Hendra, P.J., McQuillan, A.J., Chem. Phys. Lett. 26 (2), 163-166 (1974).JGoogle Scholar
García-Vidal, F.J., Pendry, J.B., Phys. Rev. Lett. 77 (6), 1163-1166 (1996).CrossRefGoogle Scholar
Yuan, H., Fales, A.M., Khoury, C.G., Liu, J., and Vo‐Dinh, T., Journal of Raman spectroscopy, 44(2), 234-239 (2013).CrossRefGoogle Scholar
Drummond, G.S., Kappas, A., Nearly 20, 217 (1982).Google Scholar
Maiti, S., Haupts, U., Webb, W.W., Proc. Natl. Acad. Sci. 94 (22), 11753-11757 (1997).CrossRefGoogle Scholar
Standridge, S.D., Schatz, G.C., Hupp, J.T., J. Am. Chem. Soc. 131 (24) 8407-8409 (2009).CrossRefGoogle Scholar
Choi, H., Chen, W.T., Kamat, P.V., ACS Nano 6 (5), 4418-4427 (2012).CrossRefGoogle Scholar
Grätzel, M., Inorg. Chem. 44 (20), 6841-6851 (2005).CrossRefGoogle Scholar
Kalyanasundaram, K., Graetzel, M., Curr. Opin. Biotechnology 21 (3), 298310 (2010).CrossRefGoogle Scholar
O’Regan, B., Grätzel, M., Nature 353 (6346), 737-740 (1991).CrossRefGoogle Scholar
Jose, R., Thavasi, V., Ramakrishna, S., J. Am. Cer. Soc. 301, 289301 (2009).CrossRefGoogle Scholar
Nbelayim, P., Kawamura, G., Kian Tan, W., Muto, H., Matsuda, A., Sci. Rep. 7 (1), 1-12 (2017).CrossRefGoogle Scholar
Chung, I., Lee, B., He, J., Chang, R.P.H., Kanatzidis, M.G., Nature 485 (7399), 486489 (2012).CrossRefGoogle Scholar
Adhyaksa, G.W.P., Baek, S.W., Lee, G.I., Lee, D.K., Lee, J.Y., Kang, J.K., Chem. Sus. Chem. 7 (9), 24612468 (2014).CrossRefGoogle Scholar
Valley, N., Greeneltch, N., Van Duyne, R.P., Schatz, G.C., J. of Phys. Chem. Lett, 4 (16), 2599-2604 (2013).CrossRefGoogle Scholar
Gersten, J., Nitzan, A., J. of Chem. Phys., 73(7), 3023-3037 (1980).CrossRefGoogle Scholar
Edward, J.T., J. Chem. Educ. 47 (4), 261-270 (1970).CrossRefGoogle Scholar
Ito, S., Murakami, T.N., Comte, P., Liska, P., Grätzel, C., Nazeeruddin, M.K., Grätzel, M., Thin Solid Films 516 (14), 4613-4619 (2008).CrossRefGoogle Scholar
Itina, T.E., J. of Phys. Chem. C, 115(12), 5044-5048 (2010).CrossRefGoogle Scholar
Mukherjee, P., Ahmad, A., Mandal, D., Senapati, S., Sainkar, S.R., Khan, M.I., Parishcha, R., Ajaykumar, P.V., Alam, M., Kumar, R. et al. , Nano Lett. 1 (10), 515-519 (2001).CrossRefGoogle Scholar
Shateri Khalil-Abad, M., Yazdanshenas, M. E., Nateghi, M.R., Cellulose 16 (6), 1147-1157 (2009).CrossRefGoogle Scholar
Lee, K.E., Gomez, M.A., Elouatik, S. and Demopoulos, G.P., Langmuir 26 (12), 9575-9583 (2010).CrossRefGoogle Scholar
Pyatenko, A., Shimokawa, K., Yamaguchi, M., Nishimura, O., Suzuki, M., Appl Phys. A, 79 (4-6), 803-806, (2004).CrossRefGoogle Scholar
Nikolov, A.S., Nedyalkov, N.N., Nikov, R.G., Atanasov, P.A., Alexandrov, M.T., Appl Surface Science, 257 (12), 5278-5282 (2011).CrossRefGoogle Scholar
Qiu, Z., Zhang, M., Wu, D.Y., Ding, S.Y., Zuo, Q.Q., Huang, Y.F., Shen, W., Lin, X.D., Tian, Z.Q., Mao, B.W.. Chem. Phys. Chem. 14 (10), 2217-2224 (2013).CrossRefGoogle Scholar
Lyon, L. A., Keating, C.D., Fox, A. P., Baker, B. E., He, L., Nicewarner, S. R., Natan, M. J., Analytical Chemistry, 70(12), 341-362, (1998).CrossRefGoogle Scholar
Kneipp, K., Kneipp, H., Bohr, H.G., Springer, Berlin, Heidelberg.261-277 (2006).Google Scholar
Sun, C.H., Wang, M.L., Feng, Q., Liu, W., and Xu, C.X., Russian J. of Phys. Chem. A 89 (2), 291-296 (2015).CrossRefGoogle Scholar